Congressuws Numerantium 30 (1931) 45-8%.

Current Addiess:

Dept. Computer Sclence PHACTTCAL GRAPH T30MORPHISM
Australian Natlonal Undvrerisity B an O Ka
Canberra, ACT 0200, Australla 01 °0d80 D. McKay
hdm@cs.anu.edw.an Computer Science Departaent

Yanderbllt Univesrsity
Nagtiville, Tennessaes 37215

We develop an improved algorithm for canonically labelling a graph
and finding generators for its automaorphism group. The emphatis is on the
power of the algorithwm for solving practical problema, rather than on Lhe
theoretical nicelies of the slgorithin. The result is an tmplementation which
can successfully handle many graphs with o thousand or more verlices, gngd
18 very likely the most powerful graph wsomarphizm program currently in use,

INTRODUCTION

In thls paper wo discuss the design of an algorithe for canonl-
cally labelling a vertex-coloured wraph and for finding genorators for
its automorphler group, This Algorlthm 18 & descendant of ene described
In McKay [141, which in turn was descended from one which first appeared
in McKay[12]. Other algorithms which also employ some of the ideas
used by our algoriths Include those of Mathon [11], Arlazarev, Zuev,
Uskov and Faradzev [1] and Beyer and Proskurewski [2]. However, we are
confident that our algorithe is slgnificantly more powerful than any
other published algorlthm for the practical selutlon of the lscmorphism
problem for general graphs. On the faw vccasions where the proof of a
nen-trivial assertion is not given here, 1t can be found in Mckay [15].

1-1 Bets and graphs

In this paper ¥ will always denote the set {1,2,---,n}. The
set of all labelled slople graphs with vertex set V will bé denoted by
GV). 1f Ged(V) and ve V, N{v,G) 15 the set of all elements of V
which are adjacent to v in &, Any other graph theoretic concepts not
deflned here can be found in [47.

let X Le a set and let < be & linear (total} order on X.
Suppose Z 13 a set whose olements are finite sequences of elements of

X (the length may vary). Then the lezicographic ordering of Z induced by
< 15 the 1inear order < deflned as follows. If a= (4,122, oo Ze) € 8
and P = (y1,yz, -~) e & then a < f elther of the followlng &re true.

(1) Tor some t, 1< ¢ < sin{k !}, we have z; =y for i <1
aad I¢ < Y-

(11) @ ye for 151 <k and 1 > k.

If X is a linearly ordered set, then minX denotes the minimum
element of X. In particular, min@ = oo. The functlon max 18 defined
simllarly.

1.2 Partitions

A partifion of the set V is & set of dls]oint non-empty subscts of
V whose union is V. An ordersd parbifion of V 1s n sequence (V,, ¥, - Vels
such that {Vi, Vi, ¥} 18 & partition of ¥, The set of all partitlons
of ¥V and the set of all ordered partitions of V will be denoted by
(V) and [I{V) respectively. For notational economy we also define
' (vy= mvyu fv).

The elements of & partition (or ordered partitiom) e T7(V)
are usually called its cells. A ¢rivial cell of « 18 a cell of cardinality
one; the alament of such 4 cell is said to be fized by m. Ir every céll
of % 15 trivial, them w 1s & disorete partition, while 1f there 1s only
one cell, 7 18 the umit partitlon.

1f m, myell’(V), we write my o= ma 1f 7, and wy have the sanme
cells, in some order. We say that mi i3 finer than my, denoted my < M,
Lf every cell of m 1is a subset of some cell of wy. Under the s2ame
conditions, wg 1s coarser than wy, It is well known that the sect Tv)
forms & lattice under the partial order <., This means that, glven =y,
ws e [T(V), there 1s a unlque coarsest partition mamze fH{V) such that
M > wyamy dnd wy 2 M ATy, dnd & unique flnest partition m vy € [T{V)
such that m, < my vmy and 7y < 7 v wg Each cell of mam is a non-
empty intersection of & cell of v, and a cell of m,, Fach cell of my vy
{s= a minlpal non-empty subset of V which is both 4 union of cells of
m and & union of calls of wy.

Let m e [T'(V). Then fix(r} is the set of elements of V which
are flxed by w. The support of w 1s the set supp(m) = V¥ \ Iix{n). The
set of minimum cell representatives of « 1 mcrn) = {oln ¥ | Vi e n},
where the minima are under the natural ordering of V.

13 Lemma Letn,, myeiI'(V),
tay Flx(m v wy) = fix(m) M Lix{my)
(o} Lix{m A wa) 2 fix(m) U F1x(ms)
e} supp(m, v my) = supp(m) U supp(rg)
d) supp{m; A wg) C supp(m)) supp(rs)
(e) meT(y v g} © mer({m) Momer(wg)

(f) mcr(m amg)= mer(r) U scrfmy) o

Lot & = {'F"'-” Va, -+, W) e [T{V). For each £ ¢ V define ulz, o) =1,
where z e Vi, If wy, wye [J(V) then we say that m and 7y are consistent
Lf, for any ¢, yeV, w(z,m) < ufy,m) lmplies that w(z,ms) < uly, o).
As 4 relatlon, consistency is symmetric but not transitive. If m; < 7y
And m, and 7 are cansistent, we lndicate thls by writing m = wy or
mg > . The relation = 1s transitive but not symmetric.

14 Groups

For permutation group theory not delineated here see Wielandt
(19). Let 7 be 4 permutation on V {in other words 7 e §,). The lmage
of v eV under 47 will be denoted by 7, More generally, 1f W V
then W7 = {w' [w e W} Simllarly, if 7 = (V;,V;, - V) e [I[V),
then w? = (V] V1, ... ¥]'), Flnally, if G e @G(V) then G e G(V) has
B(G") = {17y | 2y € B(G)}.

If 7 C 8, then {7 defines & partition #(7) e MI[V) whose
cells are the orblts of (7}, the group generated by fJ. For notatlonal
convenience we will write 8({7}) as 8(v), and £ix(12), supp(i?) and wer(7)
will be used as abbreviations for f£1x(8(i7)), supp(#(12)) and mcr(8(i7)),
respectively. The next lemma follows easily from Lomma 1.3,

1-5 Lemma
(&l
=)
(e

(d)

Let 7, ® C 5,. Then

821U @) = 8(02) v o)

flz{rr U @) = rix{d) N tix(d)

supp(fd U @) = supp(7) U supp(d), end

mer(f7 U @) C wer(7) 1 mor(@). 1

Let ' < 8§, and let [be any set such that an actieon of each
4l 1s defined on each clement af {3. Then the slabiliser of O lo T
t5 the group M= {7e!'|wT=w for each w e} Elements af Iy are

zald to fiz 12,

[ollows,

(1]

i1}

(i1}

(lv)

The most important cases of thls construcltlon are as

tpoint-wise stabilizer)

TfF WOV then My={nel|z7=g for each ze W}

It We= {g1,2s, o} wa w111 also write Pw a3 Dy
(aet-wise stabiliser)

It WCV then My ={7l"| W, =W}

{pariifion stabiliger)

If w e [I'[V) has cells Wi, Ve, -, Ve then Iy = {7e |
Vi="V for 1 <4< r} Note that this ls quite different
from Mep={7el'|a?" =r}, unless ne[I{V]

(aulomorphism group of graph)

1f 7 e @(V), then the automorphism group of G ls the
group Aut(G) = [Sn)iwy ={1€ 8. |G = G}

DEVELOPMENT OF THE ALGORITHM

In this seetion we describe the thooretical basis for the
algorithm. The more mundane aspscts of Lts Implementation will be treated
In Sectinnm I,

41 Canonical Labels

A cancnical label 18 & map C: G(V) x f1{V) — G(V), such that
for any G e G(V),me fI(V) and 4 & §, wo have

c Comn=a
(Zay I:I:G"‘HT} = G, n)
(€1 If QG n")=C{G,n), then n" =o' far soms § e Aut{G).

The maln use of & canunieal label ts to solve various graph
lsvmorphisa problems as indicated In the tollowlng Lheorem,

-2 Theorem Let G, Gue G(V), m e [T(V) and 4 & 5,. Then ClGH, w) =
C{Gu, 17) of and ondy if there 15 o permutation § e S, such that Gy = G and

e L

Hroof: The existence of § a5 required implies that C(Gy, 1) = C{Gy, w") by
Froperty C2, Suppuse convorsely that C(Gy,m) = C(Gy, 7). By Property Ci,
Gy = G{ for some e 8, Therefore C(Gy, r7)= ol v = C{@,, n"? 1},
by Property C2. Since C(Q),7) = C(&,n?), there is sonme a € Aut(G,) such
that g?d ' =", by Property 3, and sa " = #"", But a« € Aut(d,), and
80 Gy = Gf = @77, 0

The 1somorphlse provlen described 1n Theorem 2.2 can be thought
of as that of testing vertex-coloursd graphs for 1somorphism. Civen |#|
colours, we colour the vertices of ¢ which lJie 1n the 1-th cell of
m wlth the ¢-th colour, for 1 <4< |n|. We then similariy colour the
vertices of Gy in accordance with »". This will use the same colours
with the same [requency, Theorem 2.2 now gays that C(Gy,) = (G, n")
If and only If there i5 & Colour-preserving lsomorphism from (7, to (..

The most {mportant case {s, of course, when # 1 the unit
partition (V), 1o which case Property €3 holds trivially. Howover we
will maintain the mare general setting we have created, since the added
camplications will only be allight.

2.3 Equilable Partitiens

For Ge@(V), veV and WV, we define da(v, W) to be the
nugber of elesents of W which are ad)acent in @ to vy. The subscript
G will normally be suppressed. We will say that = e [M'(V) 15 equitable
fwith respect to) 1f, for all Vi, Vo & n (not necessarily distinct) we
nave dfvi, Va) = dfvz, Vi) It is easy to show that the equi table membets
of f7(V) form a lattice which 1s closed under v. Since the discrete
partition 15 always equitatle, it follows that for every m e [I(V) there
{g a unique coarsest equitable partition g(r) e [T[V) which 1s flner than
T

One of our first concerns in this section will be to study an
efficient procedure for computing E(w) from w.

2.4 The Reflnement Procedure

The algorlthm we glve here is a descendant of one first descrlbed
in Mckay [121, It actually turns oul to be a generallzatlion of an Algarlthm
of Hopcroft (18}, see alse [7]) FOT ololmizing the number of states in
4 finite automaton, although 1t was not derived from the latter.

The algorithm accepts & graph G e G(V), an prdered partition
e [J(V) and a sequence a = (W1, Wi, - W) of distinct cells of m.
The result is an ordersd partition R(G,w a)e [J(V). Under suitable
conditions, to be dlscussed below, R(G,w, a) == §(m).

2.5 Algorithm Compute R{G, 7, a) given G € G(v), n e f(V) and
a = (W, W, - Wy)Cm

(1) o=
mo= 1

tzy 1f [is dlscrete or m > M) atop: R(G,ma)=F
W oica Wi
mo=m-1

k=1

{Suppose % == (V;, V3, - -, ¥;) at this polnt.}

t3) Define (X, X3, -, X,) € [T(Vi) such that for any z e X,
y & X; we have d{z, W) < d(y, W) LI and only 1f ¥ < 7.

It {#=1) go ta (4}

Let t be the smallest Integer such that |X,| 18 maximum
(1 =1¢<a)

Lf (W) es Vi for some j (m <7 < M)) W, == X,
For 1< 4 <§ set Wy, =X,
For ¢ <4 = 5 set Wyygg o X

M- M4 a-1

Update & by replacing the cell Vi with the cells Xy, Xq, ---, X,

In that order {(in sdiu).
{43 ki=k41
I (k< r) ge ta (N

Go to (2) {

26 Theorem For any G e G(V), 7 € [I(V), we have R(G,m, n) = £(r),

Proof; (a) The value of M -m Is decreased in Step (2) and 1s only
Increased when # 1s made strictly finer. Therefore the algorithm 1s
certaln to termlirate.

{b) By definltion, £(r) < w, g0 £[r) < F at Step (1), Now
suppose that £(n) < # before sume execution of Step (1. Slnce W ls a
cell of some partition coarser than £(r) (ie. some earlier value af),
it 1s & unlon of cells of §(m). Since £(n) is equitable, we must have
that £(n) < & after the execution of 5tep (I). Therafore, by induction,
£(n) < E(@, #,7) < v when the algorithm stops.

(¢} Suppose that R(C, m) 18 not equitable. Then for some ¥;,
Yo e R(G,m,n) there are =, y e Y} such that d(z, Ya) # dly, ¥a). Since #

15 made successively finer by the algorithm, z and y must always be ln
the same cell of .

(1) At Step (1), Yy is contalned in some element of a. Hanee
Y, must sometlime be sentalned in W for an pxecution of Step (3).

(e) Simce z and y are never separated, d{z, W)= dly, W). But
since W is A union of colls of R[G,w), and d(z, Yu) # d(y, ¥u), there
iz at least one othar cell ¥y of R(G,w,n) contained 1n W for which
dlz, Ya) # dly, Y3). since Yi and Yy are different cells of R(G,m m) they
must be separated 4t some exscutlon of Step (3), At leasat ons aof Lhem,
say Yp wWill then Le contained in some new elengnt of o.

() Since the argumest in {e) can clearly be repeated in-
deflnitely, the algarithm never stops, contradleting (a}. Thersfors our
asaumption that E{G,w,fj 1s not equitable gust be false, which proves
that R(c,, w) = £(n). O

An important advantage that Algorithm 2.5 has over pravious
algorithms far computing £(r) 1s that o can sometimes be chosen to be &
proper subset of w, One methed of choosing a 1s described in the next
Lhearem,

2.7 Theorem Let & e QV), 7o [I(V) and suppose that there ia some equy
table partition = which ie coarser than v, Choose a w such that for any
W e r' we have X C W for at most one X ewla. Then R(G, 7, a) == &)

Proof (n) By the same arguments as in Theorem 26, the algoriths will
eventually stop, and f(r) < R(G,n,a) < 7.

(b} Suppose that R(G,w,a) ls not squitable. Then for scme
Y,, Yoe R(GQ, n a) there are z, yeY) such that d(z, Yy) # dly, Ya). Since
R(G,ma) < ', and o' ig equitable, thers is at least one other cell
¥y of R{G,w,a) such that diz, ¥3) 7 dly, Ya)-

tey I1f Yy, and Yy nre 1n different cells of T, the defined
relationship between 7, o and =’ ensures that at least one of them, say
Yy, 1% contained ln some cell of a at Step {1y, We can then take up the
proof of Theorem 2-6 at step (d), and conclude that (G, n, a) = §(r).

td) On the viher hand, Y, and ¥y may be in the same cell of 1.
3ince thoy are in different cells of R{Q 7, a) they must be separated
at Step (1), At least one of them, say Yz, will then be contained in
some new alement of o. Wo can now take up the proof of Theorem 2-6 at
step (o) and conclude as before that R(G,w,a) == £(r). |

Che application of Theorem 2.7 occurs when ¢F {5 regular and w
has sore than one cell, The unlt partition my 1s equltable, and 350 we
CAN choose a lo be 7 1ess any one cell, This will be particularly time-
saving 1f mwe= (v, V\v) for seze 9, in which case we can use g = (v).

A much more lmportant application of Theorem 2-7 will be described
ir Section 2.9,

Twe very useful properiies of Algorithm 2.5 are stated in the
next lemma, Both of them are iweediate conesgquances af the definition
of the algoritnm,

&8 Lemma LetGe G(V), v e[T(V), o an ordered subset of v and v € 5,,.
Then

tay R{G,w o)<, and
b} RIG7, 07, a%) = R(G, 7, a). O

2-9 Partition nests

Let w == (v, vy, -, ue) € [I(V) and let v € V; for some i. If |Vi]=1
define wov =a. I W > | define rov =W, Vi 1,9, Vi\y, Vigy, 1, V).
Also define n L v = R(, wov (v)),)

Given G e G(V), w e [I(V) and a sequence v = vy, vy, «+ Uy 0Of
distinct elements af V, we define the poariilion nest derfyed from G, n
and ¥ to be [r, my, oo ome], whers

(a) My = R(G, 7 n), and
(b omi= o L vy, for 2445 m.

It follows from Theorems 2.6 and 2.7 that each % 13 equitable,
Define N({V) to be the set of all partition nests derived from some
GeG(V), me[f(V) and vector v of distinet elements of V.

240 'The basic search tree

Let G e (V) and w e [I{V). Then the search tree T(G,w) 15 the
set of all partitlon nests v == [my, Wy, - Tm] € N(V) such that v 1s
derlved from (J, v and & sequence v, vg, -+, ¥m | Where, for 1 <1< m-1,
v, i5 an element of the first non-trivial cell of w; which has the
smallest size. This definition lmplies that |m| << [my) for 1 Sd<m

The elements of TG,) will be referred to as nodes. The
lenglh |¥| of a node » 15 the number of partitions it contains. If
Vo [ma, My, oo Miw) L6 & node then uY) denotes the node |m, g coem), far
1<i<m Thus ™ == p, If m > 2 then v 16 called & successor of
Jm-1) sipilarly, v Ls a descendant of w7 (and v 15 an ancestor
af vy 4f 1 <4¢ < m. The root node |mi| 13 an ancestor of every nodé
other than Ltself. The set of all nodes equal to or descended from 4
node w constltutes the subtree of T(G, w) rocted at v, and 12 denoted
vy T(G 7). 1f the last partition in 4 noda 15 discrete, » will be
called 8 terminal node.

SUppose that vy and »y are dlatinct nedes, nelther of which 13 8
descendant of the other. Then for some §, oi7 = uff) bur wii+?) 2 pi+7
The node p{*+!) will be denoted by v —wg and v by -

The natural linear ordseing of ¥V can be used to provide an
ordering < of the nodes of T(G,v). Let v and vz be distinct nodes. 1f
v 1s an ancestor of by then vy < vg. If nelther of v, of by L8 A0 ancestat
of the other, there s a node [ry, ma, -, we] dnd vertices w, # vy such
ERAt Wy — g = Ty, Pa, o T T L] AR - = [#1, 2, <% Py Tm L Vgl
Then we have u, < vy 1f 4 < vg. 1 vy < by, wWe 34y that py ls earlier
than g, and that pg 13 later than .

Sgme of the obvlous properties of this ordering of T(G, 7) are
listed In the next lamma.

3141 Lemms Let G e GlV), 7 e [1(V) and v, va, vs € T{G,n). Then
fa) Ezactly one of by < va, V1= p3 and vz < 1 15 Lrid.

=)} If iy < va and vy < b then iy < Vs

el W<, Ve TG, 7) and v, € T(G, 1, va) then vy < v,
except posasbly if v s an ancestor of vy,

{d) If v 78 vy and neither of v, and vs 12 an ancestor of the other,
thmm{uqifnﬂdaruyﬂ’y.-vqt:m-m. O

Clven G e Gf(V) and 7 € [I{V) wo can generate the elements of
T[G,‘I‘I’] In the arder glven by <, with the simple backtrack algoriths
glven below,

2-12 Algorithm Cenerate T{G, v} in the order eariiast to latest, piven
Ge@G(V) and m e [I(V).

(L} k=1
= R(G, n,r)
Dutput |wy]
2y T fme is discrete) go to (4)
W, = first non-trivial coll of e OF the smallest sizoe,
(0 If (We=w) go to (O
v omin Wy
Wi = Wi\
Whogoy (5 | W
ki=k+41
Quiput [ry 7 -0 m)
Go to (2
(4) ko= k-1
If (k=1) go to (B

Stop: All the nodes of T(G,7) have been output in the
required order. 0

213 Group Actions on T(G,)

1f w=|m, My - Mm] & N(V) and 1 € a, then we can define
v = [w], 0], .-, 73] Obviously »7 e N(V). The property of Algorithe
2.5 described in Lemma 2.8 has lumediate consequences for TG), as we
describe 1n the next theorem

214 Theorem Let G e @(V), me [J(V) and 7 & 5q.
() TG)= T(E,)"
by I we TG), then T{GY, a7 17} = T(G, n). 0

The map frow (&, 7) to T(G,)" lnduced by o will not 1o genoral
preserve the prdering <.

We will be particularly lnterested in permutations 75 & &, such
that @7 . (7 and n” € #. 1n other words, 7 € Aut{@). If »y, ve € T{G,7)
and wg = p7 far sooe g e Aut{Q), we write iy~ pz and say that v and
vy are sgQuivalent. DBy Theorem 2-14, ~ is an equivalence relation on
T(G, 7). 1f v 13 & torminal node of T(G,n) then v is called &n sdentity
node 1I there is no earller node of TG, w) which ls equivalent to v,

The fullowlng theorem is fundamental to our treatzent of group
actiens on (@,).

215 Theorem Let &G e G(V), me J(V) and 7 € Aut(G)y. Then
(ay TG,) = T(G,n).
by If v e T(G,n), then T(G, n,#") = T(G,)"

te) If vy, by € T(G, %), 11 < ¥y and ¥y ~ vg, then TG, 7,0 - v1)
containg no identify neodes.

Proof: Assertions (a) and (b) are imsediate consequences of Thoorem
2.14, 50 we consider only assertlon (e}, If oy e~ g, thero 1s same

7 & AUt(G), such that wy = 7. But then wy—wy =s (i - wg)" and

so TG, mva-w) = T(G,muy = w)” by (b)), Howevar u < w; and so
Yy - Vg & py-py, by Lemmpa 2-11, Therefore, every terminal node In
T(C, , wa—) 12 equivalent to an earlier termlnal node in T(G,m, v1i—pa),
which proves {(g).

4-16 Indicalor Tunctions

Let A be any lincarly ordered set. An indicator function is a
map A GV) X (V) X N[V} + A such that A[GT, v 1) = AlG, 7, u) far
any Ge@(V), ne[J(V), va TG, 7) and 4 e 8,

Glven one Indlcater functlon A, we can dsfine another indicatar
function A by

‘HG' , H:I - [d[ﬂl _“_'yﬂ }}r -I"l{G. Hryta]}r T -A{G. , pfﬁ]]}.

where & = |u|, with the lexleagraphic ordering induced from the ordering
of A,

¢-17 Delinition of £(G,)

T v =|r,my o ma] 18 a terminal node of T(G, v) then n,
la a discrete ordered partition, by definition. This means that 1y
defines an ordering of the elemonts of V. We can define a graph &fw)
lsomorphic te G by relabelling the vertices of & 1in the order that
they appear in m,. More precisely, {f T =t [ug |-+ |v,), and § o 5,
15 the permutation taking v onto ¥ for 1=4i<n, then Qv) = G*. The
following leons i{s an {mmediata consequence af the definitlons,

¢16 Lemma ff G e G(V), re H{V), 7€ 5, and v e T(G,r) s o terminal
node, then G(v") = G(v) if and only if 7 « Aut(G).

Proof: Let v = [m my, -, Wm), Where mm == (v, [vals | wn), and take
the permutation & ¢ 5, which takes w onto § for 1 <4< mn) Then

Giw) == & by definition, Also by definition, 7, = (v} | vl | wd),
and 50 G(u") = G" ¥, Therefore G(w) = G(v7) 11 and only 1f GF = 17",
which 1s possible 1f and only if 7 e Aut(d).]

Our next rvequirement is g linear ordering of G(V). Any such
ordering will do, but it will he convenient for us te uge an arderling
defined using the adjacency satrices of slements of G(V). Given G e GV}
e can deflne an integer n{G) by writing dewn the elements of the
adjacency matrix in g row-by-row fashion, and interpreting the result as

an ni-bit binary number. 1£ G,, Tye G(V) we can then deflng Gy < Gy
if and only if n{ﬂ‘;] ﬁ ﬂ{ﬁg].

W& can at 1ast define C{G,r). Let X(G,w) be the set of all
torminal nodes of T(G,7). Choose an arbitrary (but fixed) indicator
function A, let A" = max{ AlG, 7,) | v & X(G, -pr}} Then we define
€@, 1) = nax{ G(¥) | v € X(G,7) and MG, 7 v)= A").

9.19 Theorem C 15 8 canonical label.

Progf: We show that C has Properties C1-C3 (Sectlon 2.1). Property
€1 1s true because Gv) = O for any v & X{G, 7). Now let q € S By
Thearen 2-14, T(G",#") = T(G,n)" and so X(G", ") = X{G,m)". Also,
by the definition of lndicator function, Ma, w1 = MG, m, v) for
any » & X(G, 7). Flnally, by the definition of @f¥), we Iind LLAT
@(p") = G(v). Therefore C has Property ca.

In order to prove Property C3 we must recall Lemma 2-8(a).
Together with the fact that any v e X(G, #) is & partitlon nest, this
impliss that C(G,n)= G’ for some § e 5, such that 7t =,

Now suppose that C(G,n7) = C(G,#) for some 7 e S, Slnce C
satlsfies Property 02, C[G,n7) = C[G”_I,w}. Therefore there are o,
P e 8, such that o™ = ¥ =n, C(G,n")= G and C(G,n)= G*. The
assupption that GG, n") = C{G,n) thus lmplies that G v =G* and s0
fa ' e Aut(G). Finally, " " ws n? since nf = n® =, Therafors
hus Proparty Cl. 0

An elesentary means of cemputing C(G,m) 1s now apparent., Using
Algorithm 2.12 we can generate every element of X(G,n). We can then
tdentify those v e X[G,n) for which A[G,m,v) is saxinum and 50 £ind
€(G,n) from tts definition. It 15 not necessary to store all of X(G,w)
simul taneously; its elements can be processed as they are generated and
then discarded. However, this process is not practical for use with
n great many graphs because of the size of X(@,n). One probles is
with graphs having large automorphlam groups. Since Aut{G) acts semi-
regularly on X(G, w), | X(G, r)| must be & multiple of Aut(G), and so can
be lmpossibly large, even for moderate m, Secondly, there are graphs

for which |X(G,m)| ts very large, even if |Aut(G)| is small. We will
meet some of these graphs in §3,

Tho method which we will use to attack these difficulties 18 a
process of pruning T(G,f). Let us say that p e X[(G,n) 18 & canonical
node 1f C(G,w) = G(¥). Ubviously, any part of T(,n) can be ignored if
the remainder is keown to contaln a canonlcal node, Dur guiding light
ls the fellowing theorewm, which is already lmpllcit in the foregolng.

220 Theorem Let G e GIV), 7 € [J(V), and A" = max{A[G, 7, v) | v «
X(G, 7)), Let X"(G,7) be any subset of X(G,n) which contains those identity

nodes v for which A{G n, v) = A" Then X (G, 7) contains a canonical nods.
0

In the terms of Theorem 2.20 our alm will be to reduce the size
of X'(G,r) as much a6 possible. We will teduce the nusber of elements
of X"(G,) which are not ideatlity nodas by searching for automorphisms
of G and employing any we flnd to delete subtrees of T(G, 7). We will
reduce the number of identity nedes in X'(G,v) by using A.

4-21 Using aulomorphisms to prupe (G,)

The exlatence of one or more automorphlsms of (7 can be inferred
during the generatlon of T{G,m) in at least two different ways.

(1} We may find two terminal nodes b, piex('ﬂj 'rr] such that
G'[Ul:l -_— G{Fﬂ}

(2] We can sometlimes infer the presence of automorphisms from
the structure of an equitable partition.

The [lrst case {5 the more lsportant and will be treated first,
The second case can walt until Sectlan 224,

duppose then that during the generation of T(G,w) we encounter
& terminal nede vy e X(3, 7), compute G[va), and discaver that it 18 the
same 43 (G(v) for some carlier teraminal node »,, Since v, and wy are
terminal nodes, there 15 & unique persutation 4 € 5, such that by = .

It then follows from Lemma 2-18 that 4 e Aut(G). We will call o an
ezplicit automorphlsm.

Once we have found an expllcit automorphism there are severdl
ways we can put it to work, These are based on Theorem 215, The tzmedlate
outcoge of Theorem 2.15 e that we =ay lgnore the resainder of the subtree
PG, - by). However, we can do better than rhat. since Aut{G) 1s a
group, not enly 4 but all 1ts powers are in Aut(F). Moreover, LI we have
found several automorphisme of G, any permutation which is generated
by these ls also in Aut{G). The following scheme For handling this mass
of information 1s not always the best, but has been found to work very
well in many clrcumstances.

Lot ¢ € X(G,n) be she earligst tersinal node. We will need the
followlng lemma.

2.22 Lemma Lot v < woe X(G, 7). Then [¢—pu| < |vn = vl

Proof: Tf e =wal < |f - 2|y then wg € TG, m, ¢ —), which contradicts
the assusptlon that vy < Vg O

Ve next introduce an auriliary partition # € JI(V). We initlally
set # equal to the discrete partition of V, and whenever we obtain an
explicit automorphism 7, we update §:= v f{y). This means, by Lemma
1.13, that § is at every stage the orbit partition of the group generated
by all the oxplicit automorphis=zs 2o IaT dizcovered, It also means That
< B{Aut(Q)y,,)) Where [my, g, oo] 1% any common ancestor of all the
terminal nodes we have yet considered, This is Decause a permutatian
taking one node to another fixes their common ancestocs.

Now consider a node p == [my, my, -+, Tm| Which 1s an ancestor of ¢.
Pecause of the definition of ¢, » is also an ancestor of all the terminal
nodes generated so far. Let W= {v, vy - ., up} be the first nen-trivial
cell of smallest size of Wy, Where vy << uz < --+ < vy Slmce f < e O
induces a partition of W. MNow the successors of ¥, in the order earliecst
to latest, are v(v;),vlva),-- -, »(vs), Where plv) = lm, me 0 T, T 1
1f ¥; < vy are in the same cell of §, there 1s some automorphism 7,
::nnrntud by the expllclt automorphls®Es 5o far discovered, such LDIAT
u{u,}m p{vg)*. Therefore we can exclude the subtree T(@, 7, v{v)) from
turther examination. There are two ways of doing this. The first is
that, as we generate successive subtreas (G, 7, v(u)) TG, 7, elva))

+ W& only consider those for which v, & wcr(f). The second is that,
upon discevering an explicit automorphism g during the generatlon of
(G, m ov(v)), and updating 8, we check to sme 17 1t still true that
vi e mer(f), If nat, we have found proof (namely 43 that TG, w,u(v))
enly contains terminal nodes cquivilent to those of some subtres we have
already examined. Th:rel’ﬂra We can return at once to v and copslder
TRy

The technlque just described often allows ug to Jump all the
way DACk Lo an ancestor v of ¢ after only generating one terminal node of
A fubiree rooted at g successar of u. Unfortunately thiz 1s not always
possible, for example when & new terminal node 18 not recognlsed as
being equivalent to an =arlier one, 1t will also be possible (due to the
use of A - sewe later) for a whole subtree Lo be ignored without knowing
1t to be cquivalent to anything else, In order to put our automarphisms
Lo wark in such cases we have devised the followlng scheme,

Firstly, we malntaln a store W which contalng (f1x{7), ver{y))
for every explicit automerphism 7 80 far discovered (or some subsat of
them}. Then, with each non-tersindl node p e T(G,7) we aszociate a set
Wi¥) © V. The first time (1f any) we gncounter p {n the search of
TGn), W(v) is set equal to the firet smallest non-trivial cell of
Tm: WHETe U= (v} My, o m,]. The next time we encounter v (Lf any), we
redefine Wiv) = W{v)nmcr{y,)n 2er(72) M- Nwer{y.), where 4, qq, - =,
dre those previously encountered explicit automorphisme which f1x .
From then on we can ignore subtrees T(G, m, v(v)) tor which v ¢ W{v). This
is justified by Lemma 1.5, The redasons for deferring the modification of
W(r) until the second encounter with v are (1) that the subtree rooted
4t the ecarllest successor of v has to be examined anyway (since the
smallest element of W(v) before the modification remains in W(v) atter
the modification) and (11) that there is often no second encounter with
¥ (Wé may find an automorphisn dllowing us to jump back to an ancestor
of ©). The next lemna shows that we can determine whether 1 fixes v by
looking at [1x(y).

221 Lemma Let be an sxplicit automorphism. Let p — [71, 08,] €
T(G, 7) be derived from @, oand vy, vy, -, v . Then 4y fizes v if and only
if {vu v, oo umn } C £1x(7). 0

There 1% one other circumstance under which we may wish to
change Wi{¢). 1f we £ind two equivalent terminal nodes v, ¥y where
pa = p] and where » 13 the longest common ancestor of v and vy, We can

set Wi{p) e W) ocri{q).

2:24 Implicit Automorphismas

Thers are occaslons when we can infer the presence of one or
morTe automorphlsms without generating any of them explicitly. These are
based on the followiny lezpd.

225 Lemma Let G e G(V) and let 7 € [J[V) be equitable with respect to
G. If n has m non-trivial cells and either n < |n| + 4, n = 7]} m or
n=|n| 4+ m+ 1, then n, = B{Aut(G)y,) for any equitable my < m, 0

The most commonly cccurring case of Leama 2.25 18 when 0 =

ﬂ'|+M|

which corresponds to #p only having cells of sige one ar WO,

Lemma 225 can be put to several uses. The nost ipmediate
applicatlon 12 that whenever we encounter 4 node p == [rl.ﬂ. <o,y far
which m, satisfies the requirements of Lepma 2-25, we can infer that
all the terminal node: descended from » are equlvalent, and =o at most
one of them it an ldentity node (the earliest one, II anyl. A less
direct techolque 1s to stare the palr (£1x(nm), mer{rs)) in the l1st
W, along with the along with the similar pailrs derived from explicit
automorphlisms. [t can then become useful in pruning later parts of the
saarch trea,

2-26 Eliminating identity nodes

The technlques of the last few soctions are generally quite
efficient in remeving terminal nodes which are not idontity nodes.
However, there are occasions when the number of identlty nodes is
unmanageably large. Examples of these will be glven 1n later sectlene.
Some of these can be eliminated by means of an indicator functlon A,

Suppose that during the search of TG, w) we malntaln a nade
variable p. When the first terminal node ¢ is generated, we inltialize

p:=¢. Thereafter we update p == p whenever wo find a terminal node w»
such that A{G, 7, v) > AG, 7, 0) or AlG, v,)= AG,m, p) and G{v) > G(p).
The definition of C(G,w) ensures that by the time we have finished
searching T(G, n) we have Gp) = C(G,r), provided the set of terminal
nodes examined lncludes all the identity nodes. Now suppose that at some
instant during our search we have g = (7, %y, -, Wm| 40d encounter & node
v=[n, o, -, wi), not necessarily terminal. Llet r = min{m, k}. Then,
1t MG, m ") < MG, v, 6'")), the definition of an indlcator function
tells us that A(G, 7 ') < AG, 7, p) for every terminal node J* of TG,).
Therefore we can safely tgnore (G, n, ») without mlscaleulating C{G, n).

The efficlency of thls technlque depends mainly on two factors.
On 15 the power of A in distinguishing between non-equlvalent nodes.
This, of course, can only be luproved by changlog A, which willl gensrally
involve a power/computation-time trade-off. The other factor depends on
the iloitial labelling of ¢f. Suppuse that we wish to s=arch the subtress
TG m,n), o, T(G, mun), where py py, - e 8T8 the successors of w, In
Lhe order earliest to latest. We can use the loformaticn provided by
A Ly lgnering the subtres T(Q m,) 1f A(G, 7,1) < A[G, 7, 1,) for some
J< 4, The nuober of subtrees which are thus iynored could vary from none
(4f the A(G,m, w) are in non-decreasing order), te the maximum number
possible t1f A[G n,u) < A[G,w, 1) for 1 <4 < r). Whilae there i5 no
efficlent way of ensurlng that the best case always occurs woe can arrange
for the worst case Lo be very unlikely, The simplest way of dolng this
(tut not the one we will ddept) ls te label & im & random fashlon before
commenclng the generation of T(G,). A precise statistical anslysls of
how this effects the overall efficlency would ba very diffleult, but
a rough idea can perhaps be galned from the follewing two theorems,
Woe will use E(X) to denote the expectation of a vandom variable X.
The flrst theorem suggests that the number of ignored subtress wlll not
usually be such less than the maximum number possible.

2:27 Theorem Let 6 < 83 < -« < & be elements of o inearly ordered set
A Let my,ma, -, my be posytive yntegers, and put [= m; +ma+ - + m,.
Loet zy, 2y, o, 2 be elements of A, exactly my of which are equal to §; for

1< j < k. Now permute the z; at random to get z'%), 2% ... 211, sach of
the i| possible permutations being equally likely. For 1 <1 < {, mark ' if

2 = 2l for § < 4, but 0 # Be. Let M be the number of marked elements.

Thet
k-1

B(M) = o

Lo My myat o o

pe=1

where the sum 15 taken as 0 1f k = 1,

In particular, if my=m for 1 < § < &, then

k=1
m
Elm“g:'m+l < 1og(2k).

0

The sccond theores concerns the nusber of values of A{G, 7, v)
far those T(@ «, ;) which are not lgnored. Tt therefore has a bearlig
on the number of ldentlty nodes which are excluded by seans of A

2.28 Theorem Under the conditions of Theorem £27, lel N be the number
of diffsrent values amongsl the marked elements, Then

k-1

— ™ -
B(N) = z:‘'I".|'1.i'4"""-“.f+1-1-'“ + e s towh

Jm=l

where the sum 18 0 if k = 1. In parlicular, if m¢ = m for 1 £ { £ k, then
E(N)= 3;_,1" < logk. 1]

An alternative to this technique for using A 1s to compute
AlG, 7, 1) for 1 <4< r and then only search T(G,w,) for those v for
which A, 7, ¥) ts the largest. This is undoubtedly the best approach in
many cases, However we are not adopting this method because it severaly
degrades the average-case bahaviour. This 1s because the dlscavery of
automorphisms frequently allows us to reject a subtree TG, 7, 1) without
evar computing .

The Ltheorems above relate tu the effect of performing an initial
random relabelling of ¢F. The reasons we are not adeptling this approach
are, tirstly, that this relabelling may almost double the total execution
time (for a very large random graph; see 3ectlon 3.10) and, sacondly,
that in order to make some of the output useful (e.g. the list of

sutvmorphises produced) it may be necessary to translate It back to
the criginal labelling, which 13 inconvenient, We will describe an
alternative, but will only justify 1t qualltatively. A more preclse
analysls would be lmpossibly diffieult to perform

Let A" G{V) X II{V) x N(V) = A be any convenient indlcator
function. Now devise & map f: 4 -» A with the property that for pairs
T, y€ A, -y 13 very ponrly correlated with Sle)= fly). (This 1s
ot meant to be & rigorous definition). For example, take A = [-1,1]
and f(z) = sin(10'); the sign of z-yp 15 very poorly correlated
with that of fz)- fly). Now define A by A[G, 7, 0) = fIA(G, n, 1)) The
hope 1s that any tendenmcy to an unfavourable ordering of Lhe values
of A(G, mp),--- AG 7, 1) will not aceur for A[G,), AG, 7, 1)
However, as we have stated, there 1s little hope of an exact statistical
analyels, The best wo can say is that the computational experience i3
Tavourable,

2-2% Storage of identity nodes

Up to this polnt we have boen tacltly assumlng that we are
keeping 4 record of all those identity nodes s=o far generated, s0 that
we can recognize later terminal oodes which are equivalent to any of
thea. In practice this can cause a severe storage problem, since the
number of ldentity nodes can be very large, even if we don't count those
which are elliminated by use of an indicator function. Therefara 1t la
necessary t0 put &4 lisit on the number of identlity nodes fatrictly,
terminal nodes not known to be equivalent to an earlier nede) to be
stored. The optimum stratexy is not clear. On the one hand, storing
more ldentity nodos imaproves our chances of detecting automorphisas,
which can be put to use as we have seen, On the other hand, testing two
terainal nodes for equivalence 13 quite time consuming (espocially for
large graphs), and having to do a lot of these tests would have a very
bad effect an the overall execution tlme,

The technique which we have adopted, without a great deal of
theoretical justificatlon, 1s to store two identity nodes at a time.
The earliest termlnal node ¢ 15 always stored, The other terminal node
fwhich may be the same as the firet) Is aur beat guess s=o far a1t the

1aentity node corrasponding tea C[G,w). This is the node p refurped to
ap Seetlon 2.26. We also permit Lhe algorithm to search for torminal
nodes equivalent to ¢, with the aim of using the automorphisms thus
discovered to shorten the total amcunt of wark. This will somestimes
degrade the perforpdnce somewhat, but on the average Lt Works very well,

We are now able to summdrize the way in which tersinal nodes are
processed, Suppose that wo have Just created & node p, not necessarily
terminal, which ls not an ancestor of ¢ (l.e, 15 later than ¢).

The node g and the partition § have the sanme interpretation as
before. Suppose that u 15 the node |my arg, -, m] so that [el = k. Also
define m == |¢| and v = |p|, and define varlables as follows.

LY If w, satisfles the requirements of Lezmd 2-25, then bhh 15
the smallest valus of 4, 1 < ¢ < &, for which m; satisfies

thess reguirements.
ODtherwlee, hh = k.

LTH This ls the smallest value of ¢, 1 < < m, for which
all the terminal nodes descended from or egual to gf'] have
heen shown to be egulvalent.

|5 The longest comaun ancestor of ¢ and p ts ol
'H Thty =M L ¥
nb: The longest comman ancestor of poand w 1s

hzb: This 15 the maximun value of 4, 1 <4 < ninfk,r}, such
that MG, m, v = Aq, 7, o).

by returning to v¥) we mean backtracking in the search tree to
W) and proceeding with the next successor of v not yet generated, Lf
any. 1f there are na such successors, we return to W1 ana g0 forth,
Fraturn to o'™ Lz squivalent to stop.

Now suppose we have just created v = p) Lot A= A(G w1, 0)

(1) 1f (k>mor 4# M@, m, ¢ and (k = r or
A< AG, 7w, g™ go to (B).

() If v 15 non-terminal, proceed to search (&, m,u).
(3 If (k>mor 44 AG 7, ¢]) g0 ta (4),

1T the peroutation = taking ¢ onto ¢ is an automorphism,
go to {A),

(4 I (k>ror 4 AGnp) or (A= AlG,rp) and
Glw) < Gp))) 8o to (B,

£ (4> MG m,p) or (4= AlG,mp) and CW) > Gp))) set
#i== ¢ then go to (B,

1f {Azﬂﬂ: w,p) and G’{y] mm G{ﬂ]} lat 5 be the peroutation
taking p onte v and go to (Al

4y {At this stage we have found an automorphism 7.}

(A1) Add (£lx{q) mer(q)) to W (1f there is room) and set
8= v 87

(A2} If (v & mer{f)) return to ™), Otherwise, return to
fAn)
Jr" .

(B} {At this atage we have & terminal node v not known to be
equlvalent to an earlier terwlnal node, }

(B1) 0¥ (hh < k) add (£1x(myy), 2ev(ma)) te ¥ (If there
15 room).

(B2) Return to w9 where v=ain{Ah -1 wax{ht 1, heb}}.

The only feature Lo the foregolng informal algorithm which we
bave not already justified is the use of the variable ht in Step B2,
What we want to do {n Step 32 1s to return to the lengrst ancestar
W oaf » owhich may concelvably have a tarminal descendant which 1s
elther equivalent to ¢ ar lmproves on p a8 “the best canonical labal so
far®. All the terminal nedes tn T(G,w, o™ are knewn to be equivalent
o w, 50 Wi can assume tThat & < Ak, Purthermore, 1f % > Aheb, none
of the descendants of oY) cap mprove on p. Fimally, if Vo ke, and
one of the descendants of o) was equivalent to ¢ then) would be
equivalent to ¢ However, all the terminal nodes descended from gle

are equivalent, and sa all those descended from v are equivalent,
giving a contradiction.

230 We will now give a formal descriptlion of the complete algoritha.

Notes: (1) lab and dig are boolean varlables. If lab= folse, p 15 not
used, and the algorithm only searches for terminal nodes egulvalent to
¢. We will show in Theorem 233 that useful information about Aut(G) 13
still obtained. If dig = true, the algorithm wlll not use Lesnd 2:25,
and will be velid for digraphs and graphs with loops (for which Lemma
225 does not hald),

(11) The variable v refers everywhere to the node LTTE PRREEA T B
It thus changes valus Lf m (1 <4< k) or k changes value.

(lity L =1 is an integer specliying o l1lwit on the number of
patrs {£1x(z), mer(z)) to be stored al one time. The result computed by the
algorithe ig independsnl ol the cholce of L, althaugh the efficlency
ln general may nov be.

(dvy P C JI{V) is the set of all ordered partitions of V¥
which satisfy the requirements of Lenma 2-25,

(v) We are assuming for convenience that AG,n,v) Ls real in
value, If this L& not the case replace "geb .= Ay —2b" bY

-1, LE A < gby
gab =4 0, A Ay = zby
1, 1f Ay > abe

2.31 Algorithm Given G & G(V) and v e [J(V}, find generators for Aut{ @)
and (optionally) compute C(G, 7).

(1) ke peei=1
ho= heb = indez = | =0
§ o= dlscrete partitlon of ¥V
m o= R(G,m, 7]

hi 1= 2

1f (m & P and dig = false) hh:e==1
If (m 1s discrete) go to (18)
W= first smallest cell of
vy i= Bln W,
Aji=e, =10
{2] ke kel
gy o= Wit L Vi
Ae = MG n,v)
If (h==0) go to (5)
It (haf=Fk-| and A = 2fi) haf =
it (lab = false) go to (3
grh = i~ gba
If [hab= k-1 and geb=0) heb:=k
If (qeb > 0) #by = Ax
(33 Tf (heb=k or (lab = true and gzb > 0)) go to (4)
Go ta {4)
(4) IE [we Is discrete) go to (T}
Wi oo first smallest cell of m,
g 1= mnln Wy
If (dig =« true or ny & P) hh =k 41
By =)
Go te (20
(5} zfn 1= by o= Ay
Go ta (4)

(6] k' e k

k= min{kh~1, nax{ht- 1, heb}}
1f (k' = hh) go to (1D
[min{i 1, L}
Ar ie= mat(man)
P == flx(myn)
Go to (12)
(7 If [A=20) go to (18)
Lr (k5 haf) go to (B)
Define q& 8§ by {7 = p
1£ (G == G) go to (10)
(8 It (lab = folse or qsb < 0) go to (6)
1£ (qeb > 0 or k< o) g0 to (M
If {Glv) > Gp)) e te (9)
Ir [Gv) < Glp)) go to (6]
Deflne 7 e 8, by " = p
Go to (10}
(9} pi=w
b == 0]
hb = hzb =k
shepy =0
Go to (&)
(10) = mwin{l+41,L}
[1= mecr(q)
@, = £1x(7)

If (#{7) < 8) go to (11}

=8 v#q)
Outpul 4
If (tve e mer(d)) go to (11)
k=4
Go ta (13
(11} ke hb
Q2 If (e = 1) Wi := Wi
D I (k=10) stop
If (k> h) ga to (1T
[(ki k) go tn (14)
hie k
tve = {vh = nin W,
(14) IE (vy and ¢vh are In tho same cell of B) indes = indez 4 1
vk = min{v e Wi [v > u)}
Tf (ve = o0) go to (16)
1T (ve ¢ mer(8)) go to (14
(15) hh:= min{hh, &k 1}
haf == minfhaf, k}
[L [lab = false or hzb < k) go to (2)
heb =
qeb =0
G0 Lo (2)
(6) 1f ([Wi] = indez and At = k-4 1) ht = k
size e gipe X indes

= f

ndez 1= ()

ki =k-1
Go to (11

(17) Tf (e = Q) set W, == Wy Nk for mach 4, 1<+ <[, such
that {vy, vy, v} © B

g =1

vp = min{u € We |v > w}
TE {ve 9 oo) go to (15)
ki= k-1

Go to (100

(18} h:= Al = .ﬂul_f i

2fiy =
{ 1=
+—B

k=1k=1

L (lab = false] go to {13}

pi=¥

heb == b=k +1

besy:= oo

qeb =0

Go to {13} 0
232 Consider the stage during the execution of Algorithm 2.31 that

we pass the point marked B (in Step (18)). At this Instant deflpe
Ke=k-1and wy=1v (1<i<K).

Now let PPl = P = aut(@)y, and define P =Dy o .., (point-
wise stabiliser) for 1 <4 < K. Since ¢ is a terminal node, the codrsest
equitable partition which is finer than n and fixes w, wy - - wx 1s
discrete. Therefore %) =1,

233 Theorem During the ezecution of Algorithm 281, each time we pass
point A (in Step (18]} or point B (in Step {18]) the following are trus:

1y dindez = [P V/11®) (point A only)
(11) sige = |10 1))
(L1L) §=g(rie1n

vy P Y= tv) whers Y 45 the set of all automorphisms output
up te the present stage (in Step (10)),

T

Froof: The theorem follows readily From the theory that we have already
discussed, sa we will only describe briefly how this needs to be assembled,

Polat B 15 only passed once, when ¢ is created, and k=K+41
At this stage. Point A {5 then passed K times, 4t which stages k£ has
the values K, K ~=1,---,1 In that order.

We prove the theorem by backward lnductlon en k. For k =K1
it 18 obvious. Now assume 1t for ¥, for some &', 2 <k S K41, and
let k= k'=1,

Consider v == |#y,mg - M. The successors of », In the
order edrliest to latest are v, vy, ---, 0 whers o= vlug), and Wi s
{wi,wa, -, Wm} The previcus time we passed point A (or B) was when wn
completed our examination of the sybtres T(G,m,u1). We now clalm that,
fer 1<+ < m, by the tlme we have campleted examinaticn of T{G,w, TR
wi 15 1n the same cell of # as w; if and only If byrw wy

Suppose on the contrary that there is an earlisst v for which
our assertion ls net true. If w is not equivalent to vy then w and w,
are obviously ln different cells of #, since & is the orblt partition
of some subgroup of AUL(G)y,. On the other hand, 1f py -~ vi, T(@,w, ;)
contains one or more terminal nodes equivalent to {+ The nature of the
algorithm 1s such that 1f one of thess nodes 1s generated, i1t will be
recognlzed as being equivalent to ¢, and 1f it 15 not generated this will
only be becavse 1t has been shown to be equivalent to an earlier terminal
node. Furthermore, impllecit dutosorphisms are never used to reduce Wi,
and during the examinatlion of T(G, v, v}, 1L any, the only stored pairs

(#;, f2;) which are used to reduce any W, have w;e @;,. Therefore, elther
wi 1s already in the same cell of § as w; or we are sure to discover
some automorphism 7 SuUCh that] < w. By the Llnduction hypothesis w)
is in the same cell of # a5 w;, and so the update §:= 4@ v #(q) merges
the cells of # contalning w; and w;, contrary to hypothesis, Hote also
that we have just proved that 7eY.

We have thus concluded that the cell of § contalning wy is
the orbit of %) containing wi;. Since § = #(¥) by constructluon,
and ') < (¥) by the origlnal induction hypothesis, we must have
r*-4 — (¥}, since {¥} contains & full set of coset-reprosentatives for
) qn k1) This proves that § = (/™). The varlable indez merely
counts the number of elements ln the cell of # containing wy, %0 clalms
(1) and {11} fallow lmmedlately.

Claim (v) follows from the simple observatlon that the number
of cells of # starts nt n and decredses by at least ane for each now
element of Y. 1

In ¢losing we note a few simple properties of the set of
genurators of ' found by Algorithm 231, These are eseentially the same
as those given in Theorems 36-38 in [13] and the proofs given there apply
with only notational changes. Let Y be the full set of automerphlsme
output by Algorithm 2-31, and lst [== Aut{G).

2-14 Theorem (1) Y does not contain any elements of the form 48, whare
q, § e, supp(7) N supp(8) = @ and £ (1) £ §.

{2) Buppose that for some subset Y C Y, wa have (Y} = (A, A1)},
where A and A’ are non-trivial subgroups of I' with disjoint support. Then
Y =YW YE where Y R YE =0, (Y1) = AV and (Y1) = A

(8) Suppose that for some subset W C V the point-wise stabiliser
Mw has only one non-trivial orbit. Then some subsel of Y generates a con-
Jjugate of I'w in I".]

IMPLEMENTATION CONSIDERATIONS

In this section we will discuss some of the problems that arise in
the implesentation of Algorithm 2.31 and how these have been approached.
We will then examine the thearatical and empirical performance of our
laplesentation. Flnally, we will mention a4 few of the practical uses
to which our Implementation has beep put,

31 Time versus storage

The progras described in McKay [14] worked so efficlently for
bany classes of graphs that the practical limit on the size of graph
Lthat could be processed was set by the amount af storage avallablae,
rather than by execution time considerstions, Consequently the prosent
isplementation places rather more emphasis on storage conservatlon, in
some places Lo the slight detriment of time officlency,

The variable types used by Algorithe 2.31 lnelude graphs, sets,
Partitions and partition nests. We will now describe the data structures
used In cur lmplementation for each of these variable types.

1.2 Partition nests

Let v = [m,me, -, m e N(V). Then v can bo represented by two
arrays ¢ and § of length n as follows, Defipe mo o= (V).

(1 The array e contains the slemonts of V in any order

consistent with ms, Preclsely, 1f w(alr), ms) < ula(f), my)
then o < 5, for any i, je v,

(11) Each entry of b 1s an lateger in the interval [0, n+ 1]
chosen thus:

) If ulafs), ms) = ulali + 1), mw), then bfy) = n4+1
(1<i<n-1).

B 1f ufals), miy) = ula(y + 1), mi1) but wue(d),m) <
wlali 1), my), then b(s) =5 (1 < 5 Sh1gi<a-1).

el b{ﬂl =

12 Unordered partitions

the only unordered partition used by Algorithm 2.31 1s §. For
any v e V 1st 8, denote the cell of ¢ containing v and let plv) = mind,.
Clearly & can be uniquely represented by the arrvay p, and most of the
neceszary gquestlons about & can be answered very qulckly by reference
to p. Por example, 1f v, we V then v and w ave in the same cell of
1f and only 1f plv) = plw), and v escr(f) 1€ and only 1L plu) = v.

This representation of § suffers from the disadvantage Lhat
updates of the Lorm § :=#v #q), far q € Sp, are gulte exponsive in terms
of computation time. Thls problem has been considerably alleviated by
the use of & second array ¢ which “chains together™ the elemants of each

cell, More precisely, Lf ieocr(f), then 8 = {1, 9(s), qlq(i)). elala(s])). - }
where the sequence termipates on the torm before the first zero.

14 Graphs

Algorithe 3-31 requires the input graph & 4nd, for reasonably
efficlent wperatlon, requlres the graph varieble G(p). From the groat
numbier of possible ways of representing these graphs ln the computer, we
have chesen an adjascency matrlx representation because of 1ts greater
storage economy. More precisely, & 18 stored As & list of n Dblt-
vectors representing N{1,G), N(2,G), -, N(n, G), and so requires around
n? bits of storage. Since Algorithm 3.31 1s valid also for digraphs, it
18 clearly not possible to reducé thls storage requirement in general,
However 1f the program was only lotended to be applied on graphs with
very low degree, a different sort of representatlion would save space,
and probably time as well,

1.5 Efficiency of Algorithin 2-5

Algoritha 2-5 can casily be implemented using the data structures
above, We will now consider the efflclency which can be achleved 1n
swsuch an lmplesentation. The following complexity result was suggesied
by a related result 1n Griss (7]1. For the necessary definitions, refer
back to Section 2.9.

36 Theorem For any G ¢ G(V), » e {I(V) and distinet w1, vy, - vy €

¥, the derived portition nest |, me, - W] con be computed in O(n?logn)
time, assuming en implementalion in which d{v, W} can be computed in time
proportional to |W|, foranyve vV, W V.

Proof: It 1s obvlous that the tige oceupled 1n the computation of wyew;
fer 1 <9< m~-1 and {in Step (1) of Algorithe 2.5 will be O(n¥). Since
gach execution of Step (20 of Algorithm 2.5 requires only a fixed asount
af time and leads to an executlon of Step (3), we are justified in
restricting our attentlon to 5tep (3).

Fur any given W, the nocessary r executlons aof Step (3) can be
perforoed in Q(n|W|) Lime. Therefore the total time for the computation
of 1y, oy, - mm| 15 O(r* 45)2|W|), where the sum 1s over all sets
assigned to W during sny executlon aof Step (2) (far any execution of
Algarithm 2.5).

let z e V and consider the real variable s, defined at any
polnt of time durlng any execution of Algorithm 2.5 DY ga = by 4 Logy ls.
Hoere hs 15 the number of sets contalnlng ¢ which have been previously
dssigned to W during an execution of Step (2}, plus the numbar of =ets
Wy (m £ 7 < M) which contait z, plus ons for the sat {z} = {u}
created by the operation meewy, i 1t exists and hasz not already been
counted. Also o is the current slze of the cell of # which containg
%. Note that h,, /. and q, are varlables which frequently change value
during Algorithm 2.5,

The value of g, clearly remalns constant or,decreases between
different executlons of Algorithm 2.5, The enly other place where it can
change Ls during Step (1), when h; remains fixed while ly decreases, or
hy lncreases by one. In the latter case l, decreases by at least a factor
af two, Lo that §: does not increase. Therefore q: 15 non-lncreasing
throughout the computatian, implying that lts last value s bounded
above by Lits First, which 1= bounded above by 2--log.n. Therefors the
Flnal valuo K, of h, is at most 2+ logyn.

We conclude that the total tipe required for the computation
of [my, M, oo, me] s On*+n3s . hs) = O(n®logn), as required. 0

Por our partleular chelee of data structures, and our particular
loplementatlion environment, wa have found Lhat the fastest way to compute
dlv, W) for nf30 < |W| < n approximately is te represent W as a bit-
vector and to count the number of one-blts in the bit-vector representing
Niv, G}NW. Although this technigue {(used faor |W| = 1) appears to reduce
the total time in “the majorlty" of cases, it has the unfortunate side-
offect of invalldating the presises of Theorem 3.4, The best replacesent
for the bound O(n®logn) which we have been able to prave is O[n?).
Since the time required for the computation of d{v, W) 13 now essentially
independent of [W|, Step (3) of Algoritha 2.5 can be simplified by using
1. This 1s especially convenlent L[the seguence @ 1: represapted
es a set of palnters to the array o (ees Saectlen 3.2).

3-7 Efticiency of Algorithm 2-31

Let TG, 7) be & portion of the search tree T{G,«) which s
examined by Algorithm 2.31, Let wmy be the number of terolosl peodes of
TF{{;,HJ wWhich are egulvalent to the earliest terminal node ¢ {(Including
¢ 1tself). Let mg be the number of nodes of T'{G, n) which are not
equlvalent to ¢ and whlch do not have any descendants in T'l:GI r}. Let L
be The copstant deflo=d in Section 2.30. Then the total time required ny
Algorithm 231 1s O(mn®logn 4 men®(L 4 logn)), under the conditions
of Theorem 3.6, where mg aay depend on L. Por our implementation, this
must be increased to G{n’(mi + ma) + manL). By Thearem 2.33, my < n,
but we have not found any reasonable bound an mig. It varies 1n & very
complleated manner with the initial labelling of the lnput graph and
the value of L,

3-8 Odfher implementation detalls

Algorithe 2.71 has been inplemented on & Cyber 170 computer,
mainly in Fortran. Because of the difficulty in manipulating bit-vectors
gfflclently ln Portran, several smwall subroutines are coded in assembler

language.

The indicator functlon A ls evaluated by the subroutine which
impiements Algorithm 2-5. It 1= formed by taking cell sizes, relative
vertex degrees and other information whlch 1s computed in the course

of Algoriths 2.5, and marging Lhese Lloto A single Intoger value In a
"random” fashion (see Sectlon 2.28),

A technlque which produced conslderable lmprovements in af-
ficiency in some cases involves the updating of the graph G{g) when p is
updated. The computatlen of Glp) 18 gulte tise-consusing {up to about
6 seconds for m = 1000}, s0 this Computation is delayed for as long as
possible, 1n case it ix not necessary,

49 Btorage requirements

Let m be the numbor of machine-words required to hold & bit-
VECTOr of size m. Let K be the saximug length of a node of (&, 7).
Ubvlously K < m, but very much smaller values are norgal. Define [, as
before. The total amuunt of storage requited by aur loplementatlan, 1g-
nuring a4 minor amount {ndependent of % 13 dma - 10n+m -+ (m+ 4K + 2mL
words. This figure lncludes 2mm words for the atorage of G and Gfp).
If lab = false (see Algorithm 2:31), the storage requitemont is redquesd
Ly min = 2n wards,

310 Experimental performance

in Elgure 31 we glve the sxecution tlae required for several
famlides of graphe. In each description below, 2 glves the approximate
slope of the curve in the reglon 50 < n < 200, Although the results of
sectlon 1.8 predice 4 value ol § > 4, avean whan mg =10, the exporimsntal
value of A 13 less than 1 In each of these classes,

£ : empty graph on n vertices (f = 2-B}.
¢ : m-dloensional cubs, where n= g™ (=23,

€ ¢ random circulant Eraph of degree 10 (F == 2.2}, 'Thia 13
deflned by V(G)= V and E(G) = {z¥]|z-y| € Wlnodn)},
whers W is a random subset opf {1,2,--- l{n=1)/2]} of size
5.

e @ "randos® regular graph of degree 6 (f = 2.9). Thore
Is no known practleal dlyorithe for randomly gonerating
regular graphs so that each graph appears with equal

T3

Timn
in
ELLRN N TL

15

14

14

T T L] o r ¥ T L

T 1 ¥ T¥%
1 104 Rl

number of werlices

Figure 4-1

Hﬂu
G1 i

e

frequency, The gyraphs rapresented by the curve Ry were
made by randomly generating three persutatlaons 1, o And
73 & Sy such that ' # z (5§ @ {97, 95,93 and z7 £ gm0
(1 <4< <3 for each ze V. Deflne G by V[(G)=V
and E(G) = (22" |z eV, 1 <i{< 3} For n>> 40 all those
Eraphs constructed had trivial sutomorphism groups, and
produced search trees with maximum depth 2.

1eame a3 JT but with degree 20 (f == 2.6),

random graph (f = 2.0). Each possible edge 1s Independ-
ently chosen or not chosen with probabllity 4. The dashed
tino mwarked P in fligure 51 glves the average time requlred
for tho computation of Gp) for some p. At least one
such step is ossentlal for any program which Computes
C{G,) from & using an adjacency matrix representation,
Therofore figure 3.1 suggeete that the perfarmance ef our
program 13 close to optimal for large random graphs.

D osame 48 () but with [gh = false.

3-11 Harder examples

We have also tested our program on a nuober of graphs which have
traditionally been regarded as difficult cases for graph isamarphise

programs.

¥

(i

{111}

The sirongly regular graphs with 25 vertices: required
betweaen 01 and 2.4 seconds, with the average time being
1:0 seconds.

A strongly regular graph & with 15 vertices can be formed
from a Stelner Triple System (STS) with 15 polnts. The

vertices of @ are the blocks of the STS, and two vertices
atre adjacent if the corresponding blocks overlap, For the
B0 graphs so formed, our program required between 0.3 and
T secunds, with an average of 4.8 seconds, Most of these
kraphs have a trivial sutomerphism group.

Certain strongly regular graphs G with n vertices can be
extended to graphs E(G), having 2n+4 2 vertices, which are

E-level regular (2ee Mathan [10]). There are good theorstl-
cal reasons [10] to expect 2-level regular graphs to be
partlcularly difficult to process, and this le borne out
Ly experience. The graphs Agg and Hey (60 vertices; swes
(101} required 79 and 180 seconds respectively, while the
graphs Asg « Dygp (72 vertices) tequired about 500 seconda
GAC T,

112 Design isomorphism

A design D) {also known as a Aypergraph) 15 a pair of sots
(£, @), where B 15 a collection of subsels of P. The elements of P
are called points and the elements of H are called biocks. Two designs
Dy = (F, Bh) and Dy = (P, By) are igomorphic if thore are bijections
fiiPy-v Py oand fy: By = B; such that z ¢ X implies fi(z) e fu(X) for
nll e P, and X & Hy.

Given a design D= (P, B) we can construct & graph &= G(D),
where V(G) = PUR and B(C)={zX |zeP, X e,z e X} 1L 15 eany
to prove ([3]1, (f7]) that two designs D, = (P, B)) and Dy = (Fs, Hy)
are lsomorphic if and only If thore 18 an laomorphism f: G(D) = G{Dg)
such that f(P) = P, and f[B,) = H;, Therefore Algorlthm 231 c¢an be
used for design isomorphlam.

If I 1s & balanced incomplete block-design (BIBD) then G(D)
ls known to present difficultles for many graph lsomorphism pregrams,
and ours 18 no exception. Two S0-vertex graphs G(D), named Ags and By
in [10), required about 60 seconds edch. In another experiment [18], we
a3tabllshed the i{saomorphism of six BIBUs with 36 polnts and 36 blocks
{so n==T2) using about &6 seconds of machine time each. The smallness
vf this figure 1s principally due to the reasecnably rlch automorphlsm
groups of the designs.

A much more difficult problem posed by two BIBDs with 126 points
and 525 blocks hasz been previously discupsed in Stanton and MckKay [17].

3-13 Hadamard squivalence

Let M, and My be two m %X n patrices with 41 entrles. We say
that M, and M, are Hadamard equivalent 1f My cdan be obtdalned from

M, Uy applylog ar elesent of Lhe group I" generated by the following
operations,

P ¢ FeTBUute Lthe rows according to a e 8.
9a ¢ Permute the columns accarding to A e 8.
Fio 1 Multiply row 4 by =1 (| <1< m).

g ¢ Multlply column 5 By -1 (1 “<i<n).

Suppase that M 1: any m X n matrix With 4-1 entries. Define (7 e=
G(M) to be the graph with VIG) = {vi, 0w, | 1 “SiEml<i<n)
and B(T) = {vuw, 04, |1 << M1 n My =1}u{ndy, tu |
letsml<i<a M, =1} We will refer to the vertlees v, and g,
a5 y-lype vertices. The following theorem first appeared in Mckay [16].

314 Theorem Let G, = G{M,) and ¢, — G(Ms). Then M, and M, are
Hadamard squivalent i\f and only «f there i3 an tsomorphism from Gy to Gs
which maps the v-type vertices ef &) onto these of G, L]

IL M 15 & Hadapard matrix (m=on and MTM — nl) then the
kraph G(M) may prove oxceedingly difficult tor Algoriths 291, This Wil G
discovered when our tmplemontation was applied to a collection of 126
Hudamard matrices of order 24, produced by £, Dibley and W, D. Wallls, in
an attenpt to determine the equivalence classes., Several of the ETaphsa,
having large autczorphism groups, were processed ln about 300 seconds,
but some of those with smaller automorphlism groups would require mare
than 1800 s=conds the program was not run ba completion, These graphs
aro all 2-level regular in the sense of Mathon [10], -but are very much
harder than these glven in (107, even though thex have larger groups. The
veason for this 1s that the search tree TG, w) has depth 7 or & (compared
with 4 for the graphs in [101), =lthough only 2 or % vortices generally
need to be fixed in order to eliminate any non-trivial automorphisms.
Thig means that the automarphlem group is of no use for & large part of
TG,).

Other workers (see [6] far example) have found that & count of
small subgraphe (e. g. tllques) can often be used to provide an ipitial

partitioning of the vartices of a difficult graph, whlch greatly speeds
up & subseguenl fsvmorphlsm test, Similar techniques can be used hers,

tut they are of no use in many cases. Some of the hardest graphs amongsl
the 126 mentioned above have only two orbits (the v-type vertlces and the
others) — the {nitial partitioning which we were uslng anyway (because of
Theorem 3.15). Howsver we have devised 4 method based on a generaliszallon
af the profile defined in (5] which can be used to refine the partitions
at the immediste successers of the root node tn T°(G,w). With this

improvement, we can now process these graphs in about 20 seconds on the

nvernge.

An algorithe speclfically for equivalence of Hadamard matrices
has been defined by Leon (9], The detatls given in [9] are lnsuffliclent to
permitT 4 divect comparison with owur technigque, but a cursory examination
suggnsts that Lean's trchnigue may be coapetltive wilth curs for this
particular probler.

EXAMPLES

[n this section we glve two examples of the automorphlsm Froup
penerators produced by Algorithm 2.31. In each case we will use Lhe
natatian defined in Sectlon 232,

11 Firsl example

in our first exaople & 15 the S-dimensional cube defined as

follows.

VIG) = [[i,7, k. m)|di 5 kime{01}}
E{GJ == [{il.j],*-l; Illmﬂ“?l jﬂ: 'hl i=l mﬂ] | i.Il.l _":"-i}t + [.1'1 _Jl'd]:
+ (k1 = k2)* 4 (b - ba)* + (M1 - ma)? = 1)

The elements of V(G) are numbered 1,2,---,32 in lexicopraphic order.

For this graph we find K =5, w, =1, wy = 16, ws;= 4,
wy = 28 and ws = 30. The output produced 1s as below. The executlon
time wasz 0-18 seconds.

(3 L3 d44 63 (11 133 (12 140 (49 21) (20 22% (27 29} (28 30}

Ir= 2 |t = 2

(4 2306 VY010 11) (14 15 (1B 190 €22 210 ¢26 27y (30 11)

F¥="6 Jor¥) = 16
(5 8pd6 100 (7 11) (8 12) (21 25) (22 26) (23 27) (24 28)
r®= 20 je(rth = 10

(9 173 (10 183 (11 1% (12 200 {13 21) (14 223 {15 210 (16 200

M= 120 |gr = s

(1 2003 4305 6) (7 B) (9 100 (11 12 (13 143 €15 16) €17 18) (19 20)
(21 22) (23 24) (25 261 (27 28) €29 30) (31 32)

[P = 3840 |8(r) = 1

4-2 Becond example

In our second example ¢ s the lexleographic product Cu|)
defined & follaws.
VIG) = {5, /)11 24,7 <5}
F(G) = {1, 7160, £ [|ix=12) = 1{nod5) or
Vo= iy end |5 - 5] 20 1{mod)}
The vertices are labelled 1,2 -..,25 in lexicographic order.
For this graph we flnd K = 10, W= 1, wy=3d, wy= 11,
wy =13, wy =16, wyp - 18, wy = 2], ws =123, wo=6 and wyy= 8. The

output Lelow was generated in 0,323 seconds,
71 e M

IFY) = 2 [ert) =13
(6 78910

|P®)) = T I (PR T
(22 25) (23 24)

rit) = 20 |8(r') = 19
{21 22 23 24 28)

IM¥l= 100 [Hr®) e 10
(17 20) (18 19)

e 200 |o(r) = 15
(16 17 18 19 20

[P = 1000 |0 = 13

12 153 (13 14}
P = 200 |8ty e 1y

(11 12 13 14 1%
(6 21 (7 220 (B 232 (9 243 (1D 25X €11 16) €12 17) (13 18) (14 19) (15 200

[P = 0000 [P = 7
(2 5143 4]
|r0Y = aoooo |RPUY = S
(12345

(4611 96 213(2 7 12 17 22)(3 8 13 18 23 (4 § 14 18 24) (5 10 15 20 25)
1P| = 1000000 |O(F)] e L

REFERENCES

(1] V.L., Arlazarov, 1.1, Zuev, A.V. UOskov and I.A. Paradzev: An
algorithe for the reduction of finite nen-oriented graphs to
canonical form. Zh, vfechisl, Mat, met. iz 14, 3 (1974}
T37-7413.

121 T, Boyer and A, PFroskurowskil: Symmetries in Lhe graph ¢oding
problem. Proc. NWTE ACM/CIPC Pae. Symp. (1976) 198-203.

[3] ., Bohm and A. Santollial: A qudsi-declsion algorithm for the
p-equivalence of two matrices. JOO QULLETIN 3, 1 (lG04)
E7-40,

[4] J. A, Bondy and I, 5 R, Murty: Graph Theory with Applicalions,

Macmlllan (1976).

£5] J. Cooper, J. Milas and W.D. Wallls: Hadamard egulvalence.
International Conference on Comblnatorial Mathematics, Canberra
{13773, Lectures Notes in Mathesatics 686, Springer-VYerlag
126=1135,

(6] D.G. Cornell and R.A. Mathon: Algorithmic techniques for the
generation and analysis of strongly regular graphs and other
combinatorial conflgurations. Annals of Discrele Math, 2 (1978)
1-32,

[7 D. Gries: Describing an algarithm by Hoperoft. Acta Imformatice
& (1973) 97-10%9.

(&]

(9]

(107

[11]

(12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

J. Hopcroft: An mlogm algorlths for winimizing states in
A finlte automatan. Theory of Machines and Computations.
Acadenlc Press (1971) 1B9-196,

Jo 5. Leon: An algorithm for computing the automorphlsm group
of a Hadamard matrix, J Combinatorial Theory (A) 27 (1974
285--306.

R. Mathon: Sample graphs for lsomorphise testing. Proc.
9th. Southeastern Conf on Comb., Graph Theory and Computing
(137d), to appear.

K. Mathon: Persona! communication.

B. D, McXay: Backtrack programming and the graph isomerphism
problem. M, 5Sc. Thesis, Univeralty of Melbourne (19763,

B. D, McKay: DBacktrack programnlng and {somerph rejsctlon on
ardered subscts. Ars Combinatorie 5 (1978 65-69,

B.D. McKay: Computing automorphisas and cananical labellings of
graphs. International Conference on Comblinatorial Mathematics,
Lanbarra (1877), Lecture Notes in Mathematics 686, Springer-
Verlag, 223-232,

B, D McEay: Topics s Computational Graph Theory. FPh. D
Thesis, University of Melbourne (19800,

B.D. McKay: Hedamard mquivalence via graph lsomorphlem. [Discrate
Malh. 27 (1879) 213-214.

E.D. McKay and R.G. 3tanton: [somorphlsm of two large dealgns.
Ars Combinatoria 6 (1978) 87-90.

B. 0. McKay and R.G. Stanton: Some graph lsomorphlse computa-
tions, Ars Combinatoria, 9 (19800 307-1313,

f. Wielandt: Finite Permulalion Groups. Academic Press (1964),

