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Abstract. This paper proposes a novel approach named AGM to e�-

ciently mine the association rules among the frequently appearing sub-

structures in a given graph data set. A graph transaction is represented

by an adjacency matrix, and the frequent patterns appearing in the ma-

trices are mined through the extended algorithm of the basket analysis.

Its performance has been evaluated for the arti�cial simulation data and

the carcinogenesis data of Oxford University and NTP. Its high e�ciency

has been con�rmed for the size of a real-world problem. . . .

1 Introduction

Mining knowledge from structured data is a major research topic in recent data
mining study. \Graph structure" is one of the representatives of the structured
data since it frequently appears in real-world data such as web links and chemical
compounds structures. In the �eld of chemistry, CASE and MultiCASE systems
have been often used to discover characteristic substructures of chemical com-
pounds [8], [9]. Though these systems can e�ciently �nd the substructures, the
class of the substructures is limited to the no-branching atom sequences. Wang
and Liu proposed the mining of wider class of substructures which are subtrees
called schemas [14]. Though the proposed algorithm is very e�cient to mine fre-
quent schemas from massive data, the mining patterns are still limited to acyclic
graphs. To mine characteristic patterns having general graph structures, the
propositional classi�cation techniques, e.g., C4.5, the regression tree techniques,
e.g., M5, and the inductive logic programming (ILP) techniques have been ap-
plied in the carcinogenesis predictions of chemical compounds [10], [7]. However,
these approaches can discover only limited types of characteristic substructures,
because the graph structures must be pre-characterized by some speci�c features
and/or ground instances of predicates.

Recently, a technique to mine the frequent substructures characterizing the
carcinogenesis of chemical compounds has been proposed without requiring any
conversion of substructures to speci�c features by Dehaspe et al. [3]. They used

?? Currently beeing in Tokyo Research Institute, IBM, 1623-14 Shimotsuruma, Yam-

atoshi, Kanagawa, 242-8502, Japan.



2 A. Inokuchi, T. Washio and H. Motoda

the ILP framework combined with levelwise search to minimize the access fre-
quency to the database [11]. Since the e�ciency achieved by this approach is
much better than the former ILP approaches, some new discovery of substruc-
tures characterizing carcinogenesis was expected. However, the full search space
was still so large that the search had to be limited within the 6th level where the
substructures are represented with 6 predicates at maximum, and they reported
that signi�cant substructures have not been obtained within the search level.
Some other researches have also developed the techniques to mine the frequent
substructures in graph data. The graph-based induction (GBI) is an approach
to seek the frequent patterns by iteratively chunking the vertex pairs that fre-
quently appear [12]. SUBDUE is another approach to seek the characteristic
graph patterns to e�ciently compress the original graph in terms of MDL prin-
ciple [2]. These approaches do not face the severe computational complexity.
However, they may miss some signi�cant patterns, since their search strategies
are greedy.

Though the task tackled by these works involves the problem of deciding
graph isomorphism which is known to be NP, each work mines some charac-
teristic graph substructures by introducing the limitations on the search space
and/or the class of substructures. The objective of this paper is 1) to propose
a novel approach named as \Apriori-based Graph Mining", AGM for short, to
mine the frequent substructures and the association rules from the general class
of graph structured data in a more e�cient manner than the preceding work,
and 2) to assess the performance of the approach for the arti�cially simulated
data and also for the carcinogenesis data of Oxford University and National
Toxicological Program (NTP) [13].

2 Principle of Mining Graph Substructures

The methods studied in the mathematical graph isomorphism problem are not
directly applicable to our case, because the methods are only to check if the two
given graphs are isomorphic [4]. We introduce the mathematical graph represen-
tation of \adjacency matrix" and to combine it with an e�cient levelwise search
of the frequent canonical matrix code [5]. The levelwise search is based on the
extension of the Apriori algorithm of the basket analysis [1].

2.1 Representation of Graph Structures

A graph in which the vertices and edges have labels is mathematically de�ned
as follows.

De�nition 1 (Graph having Labels) Given a set of vertices V (G) = fv1; v2;

:::; vkg, a set of edges connecting some vertex pairs in V (G); E(G) = feh =
(vi; vj)jvi; vj 2 V (G)g, a set of vertex labels L(V (G)) = flb(vi)j8vi 2 V (G)g
and a set of edge labels L(E(G)) = flb(eh)j8eh 2 E(G)g, then a graph G is
represented as

G = (V (G); E(G); L(V (G)); L(E(G))):
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This graphG is represented by an adjacency matrixX which is a very well known
representation in mathematical graph theory [4]. This transformation from G to
X does not require much computational e�ort.

De�nition 2 (Adjacency Matrix) Given a graph G = (V (G); E(G); L(V (G));
L(E(G))), the adjacency matrix X has the following (i; j)-element, xij,

xij =

(
num(lb) ; eh = (vi; vj) 2 E(G) and lb = lb(eh)

0 ; (vi; vj) 2=E(G)
;

where num(lb) is an integer arbitrarily assigned to a label value lb. Moreover,
a number num(lb) is assigned to the i-th low (i-th column) of the matrix where

vi 2 V (G) and lb = lb(vi).

De�nition 3 (Size of a Graph) The \size" of a graph G is the number of

vertices in V (G), i.e., k in De�nition 1.

De�nition 4 (Graph Transaction and Graph Data) A graphG = (V (G);
E(G); L(V (G)); L(E(G))) is a transaction, and graph data GD is a set of the

transactions, where GD = fG1; G2; :::; Gng.

Each element of an adjacency matrix in the standard de�nition is either `0' or
`1', whereas each element in De�nition 2 can have the number of an edge label.
This extended notion of the adjacency matrix gives a compact representation
of a graph having labeled edges, and enables an e�cient coding of the graph as
shown later.

The representation of the adjacency matrix depends on the assignment of
each vertex to the i-th row (i-th column). To reduce the variants of the rep-
resentations and increase the e�ciency of the code matching described later,
the vertices are sorted according to the numbers of their labels. The adjacency
matrix of a graph whose size is k is noted as Xk, and the graph as G(Xk).

De�nition 5 (Vertex-sorted Adjacency Matrix) The adjacency matrix Xk

of the graph G(Xk) is vertex-sorted if

num(lb(vi)) � num(lb(vi+1)) for i = 1; 2; :::; k � 1:

In the standard basket analysis, items within an itemset are kept in lexico-
graphic order [1]. This enables an e�cient control of the generation of candidate
itemsets. However, the vertex-sorted adjacency matrices do not have such lex-
icographic order. Thus, a coding method of the adjacency matrices need to be
introduced.

De�nition 6 (Code of Adjacency Matrix) In case of an undirected graph,
the code code(Xk) of a vertex-sorted adjacency matrix Xk;

Xk =

0
BBBBB@

x1;1 x1;2 x1;3 � � � x1;k
x2;1 x2;2 x2;3 � � � x2;k
x3;1 x3;2 x3;3 � � � x3;k
...

...
...

. . .
...

xk;1 xk;2 xk;3 � � � xk;k

1
CCCCCA ;
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is de�ned as

code(Xk) = x1;1x1;2x2;2x1;3x2;3x3;3x1;4 � � � xk�1;kxk;k;

where the digits are obtained by scanning the elements along the columns at the

upper triangular part of Xk. In case of a directed graph, it is de�ned as

code(Xk) = x1;1x1;2x2;1x2;2x1;3x3;1x2;3x3;2 � � �xk�1;kxk;k�1xk;k;

where the digits are obtained similarly to the undirected case, but the diagonally
symmetric element xji is added after each xij when i 6= j.

The method proposed in this paper discovers substructures frequently ap-
pearing in the graph transaction data GD. The rigorous de�nition of the sub-
structure is given as follows.

De�nition 7 (Induced Subraph) Given a graph G = (V (G); E(G); L(V (G));
L(E(G))), an induced subgraph of G, Gs = (V (Gs); E(Gs); L(V (Gs)); L(E(Gs))),
is a graph satisfying the following conditions.

V (Gs) � V (G); E(Gs) � E(G);

8u; v 2 V (Gs); (u; v) 2 E(Gs), (u; v) 2 E(G):

When Gs is an induced subgraph of G, it is denoted as Gs � G.

2.2 Algorithm of AGM

Candidate Generation The two indices which are identical to the de�nitions
of \support" and \con�dence" in the basket analysis are introduced.

De�nition 8 (Support and Con�dence) Given a graph Gs, the support of
Gs is de�ned as

sup(Gs) =
number of graph transactions G where Gs � G 2 GD

total number of graph transactions G 2 GD
:

Given two induced subgraphs Gb and Gh, the con�dence of the association rule
Gb ) Gh is de�ned as

conf(Gb ) Gh) =
number of graphs G where Gb [Gh � G 2 GD

number of graphs G where Gb � G 2 GD
:

If the value of sup(Gs) is more than a threshold value minsup, Gs is called as a
\frequent induced subgraph".

Similarly to the Apriori algorithm, the candidate generation of the frequent
induced subgraph is made by the levelwise search in terms of the size of the
subgraph. Let Xk and Yk be vertex-sorted adjacency matrices of two frequent
induced graphs G(Xk) and G(Yk) of size k. If both G(Xk) and G(Yk) have equal
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elements of the matrices except for the elements of the k-th row and the k-th
column, then they are joined to generate Zk+1.

Xk =

�
Xk�1 x1

x
T
2

xkk

�
; Yk =

�
Xk�1 y

1

y
T
2

ykk

�
;

Zk+1 =

0
@Xk�1 x1 y

1

x
T
2

xkk zk;k+1
y
T
2

zk+1;k ykk

1
A =

0
B@ Xk

y
1

zk;k+1
y
T
2

zk+1;k ykk

1
CA ; (1)

where Xk�1 is the adjacency matrix representing the graph whose size is k�1, xi
and yi(i = 1; 2) are (k�1)�1 column vectors.Xk is called the \�rst matrix" and
Yk the \second matrix". The following relations hold among the vertex-sorted
adjacency matrices Xk; Yk and Zk+1.

lb(vi; vi 2 V (G(Xk)) = lb(vi; vi 2 V (G(Yk)) = lb(vi; vi 2 V (G(Zk+1)));

lb(vi; vi 2 V (G(Xk)) � lb(vi+1; vi+1 2 V (G(Xk));

lb(vk; vk 2 V (G(Xk)) = lb(vk; vk 2 V (G(Zk+1)); (2)

lb(vk; vk 2 V (G(Yk)) = lb(vk+1; vk+1 2 V (G(Zk+1));

lb(vk; vk 2 V (G(Xk)) � lb(vk; vk 2 V (G(Yk)):

Here, i = 1; � � � ; k � 1. zk;k+1 and zk+1;k are not determined by Xk and Yk.
Each can take every integer value num(lb) corresponding to each edge label lb
or 0 corresponding to the case that no edge exists between vk and vk+1. In case
of an undirected graph, zk;k+1 and zk+1;k must have an identical value. This
join procedure of Xk and Yk creates multiple Zk+1s for all possible value pairs of
zk;k+1 and zk+1;k. Note that when the labels of the k-th vertices vk of G(Xk) and
G(Yk) are the same, exchanging Xk and Yk (i.e., taking Yk as the �rst matrix
and Xk as the second matrix), produces redundant adjacent matrices. In order
to avoid this redundant generation, the two adjacency matrices are joined only
when Eq.(3) is satis�ed. The vertex-sorted adjacency matrix generated under
this condition is called a \normal form".

code(the �rst matrix) � code(the second matrix) (3)

In the standard basket analysis, the (k + 1)-itemset becomes a candidate
frequent itemset only when all the k-sub-itemsets are con�rmed to be frequent
itemsets. Similarly, the graph G of size k + 1 is a candidate of frequent induced
subgraphs only when all adjacency matrices generated by removing from the
graph G the i-th vertex vi (1 � i � k + 1) and all its connected links are
con�rmed to be frequent induced subgraphs of the size k. As this algorithm
generates only adjacency matrices of the normal form in the earlier (smaller)
k-levels, if the adjacency matrix of the graph generated by removing the i-th
vertex vi is non-normal form, it must be transformed to a normal form to check
if it matches one of the normal form matrices found earlier. An adjacency matrix
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Xk of a non-normal form is transformed into a normal form X 0

k
by reconstruct-

ing the matrix structure in a bottom up manner. First, an adjacency matrix of
the size 1 � 1 is set for each vertex vi 2 G(Xk). Then, the pair of the matri-
ces for the vertices vi; vj 2 G(Xk) satisfying the constraints of Eq.(2) and (3)
are joined by the operation of Eq.(1). At this time, the values of the elements
for (vi; vj) and (vj ; vi) in the original Xk are substituted to the non-diagonal
elements z1;2 and z2;1 respectively to reconstruct the structure of G(Xk). Sub-
sequently, the pair of the obtained 2 � 2 matrices are further joined according
to the constraints of Eq.(1), (2) and (3). The values of the elements z2;3 and
z3;2 are determined from Xk in the similar manner. This procedure is repeated
until a k � k matrix X0

k is obtained. Because X 0

k precisely reects the structure
of G(Xk), and is constructed by following the constraints, X 0

k is a normal form
of Xk. This reconstruction is called \normalization". In the intermediate levels,
the normal forms of all induced subgraphs of G(Xk) can be derived. This feature
of the normalization is used in the frequency calculation explained latter. The
normalization consists of the set of permutations of the rows and the columns
of the original matrix Xk. Thus X

0

k has the relation of X0

k = (Tk)
TXkTk where

Tk is the transformation matrix. The details of the normalization can be found
in [6].

Canonical From After all candidate induced subgraphs are derived, the sup-
port value of each candidate is counted in the database. However, the normal
form representation is in general not unique for a graph. For instance, the follow-
ing two matrices which are both normal forms represent an identical undirected
graph with a unique link label.

X3 =

0
@0 0 1
0 0 1
1 1 0

1
A ; Y3 =

0
@0 1 1
1 0 0
1 0 0

1
A :

If the support value is counted for each representation independently, it has to
be summed up to obtain the correct support value for the corresponding graph.
To perform this summation e�ciently, all normal forms for an identical induced
subgraph must be indexed. For this purpose, canonical form is de�ned for normal
forms of adjacency matrices representing an identical induced subgraph, and an
e�cient method to index each normal form to its canonical form is introduced.

De�nition 9 (Canonical Form) Given a set NF (G) of all normal forms of
adjacency matrices representing an identical graph G, its canonical form Xc is
de�ned as X having the minimum code number in NF (G), i.e.,

Xc = arg min
X2NF (G)

code(X):

We assume that all the transformation matrices Sk�1 to the canonical form
from the normal forms of every frequent induced subgraph of size k-1 are known.
Let Xm

k�1 be the matrix obtained by removing the m-th vertex vm (1 � m � k)
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from G(Xk). Xm
k�1

is transformed to one of its normal forms, X 0m
k�1

, by the afore-
mentioned normalization, and thus its transformation matrix Tm

k�1 is known.
Furthermore, let Sk�1 of X 0m

k�1 be S
m
k�1, then the transformed canonical form is

represented by (Tm
k�1S

m
k�1)

TXm
k�1T

m
k�1S

m
k�1. The canonical form Xck of Xk and

the matrices Smk ; Tm
k to transform Xk to Xck are obtained from Smk�1; T

m
k�1 by

the following expressions. The detailed proof of this transformation can be found
in [6].

sij =

8>><
>>:
smij 0 � i � k � 1 and 0 � j � k � 1;

1 i = k and j = k;

0 otherwise;

tij =

8>>>>><
>>>>>:

tmij i < m and j 6= k;

tmi�1;j i > m and j 6= k;

1 i = m and j = k;

0 otherwise;

Xck = arg min
m=1;���;k

code((Tm
k Smk )TXk(T

m
k Smk ));

where sij ; s
m
ij ; tij and tmij are the elements of matrix Smk ; S

m
k�1; T

m
k and Tm

k�1

respectively. Tm
k Smk which minimize the code is Sk of Xk.

Frequency Calculation Frequency of each candidate induced subgraph is
counted by scanning the database after generating all the candidates of frequent
induced subgraphs and obtaining their canonical forms. Every transaction graph
G in the database can be represented by an adjacency matrix Xk, but it may
not be a normal form in most cases. Since the candidates of frequent induced
subgraphs are normal forms, the normalization must be applied to Xk of each
transaction G to check if the candidates are contained in G. As previously de-
scribed, the procedure of the normalization of Xk can derive the normal form of
every induced subgraph of G in the intermediate levels. Thus, the frequency of
each candidate is counted based on all normal forms of the induced subgraphs of
G. When the value of the count exceeds the threshold minsup, the subgraph is a
frequent induced subgraph. Once all frequent induced subgraphs are found, the
association rules among them whose con�dence values are more than a given con-
�dence threshold are enumerated by using the algorithm similar to the standard
basket analysis.

3 Performance Evaluation

The performance of the proposed AGM was examined using an arti�cial graph
transaction data. The machine used is a PC with 400MHz CPU and 128MB
main memory. The size of each transaction is determined by the gaussian distri-
bution with the average jT j and the standard deviation 1. The vertex labels are
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randomly determined with equal probability. The edges are attached randomly
with the probability of p. L basic patterns of the average size jI j are generated,
and one of them is randomly overlaid on each transaction. The two groups of the
test data, one for the directed graph and the other for the undirected graph, are
prepared. The direction of the edges are given randomly in the former group.

Figures 1, 2, 3 and 4 show the results of computation time for di�erent
number of transactions, number of vertex labels, minimum support threshold and
average transaction size for both directed and undirected graphs, respectively.
In every parameter setting, the required computational time and the number of
the discovered frequent induced subgraphs are less in the case of directed graph.
Because the number of possible subgraph patterns is larger due to existence
of edge direction, the frequency of each subgraph pattern is smaller. This also
reduces the required computation for search. In short summary, the proposed
algorithm does not show intractable computational complexity except the cases
for graphs of large size in the database.
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transaction size.

4 Application to Chemical Analysis

AGM was applied to chemical carcinogenesis analysis which is a challenge topic
proposed in IJCAI-97 by Srinisavan et al. [13]. The task is to �nd structures typi-
cal to carcinogen of organic chlorides. The objective data were obtained from the
website of National Toxicology Program (NTP) and Oxford University. Totally,
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Table 1. Results for three minsup values.

minsup = 20% minsup = 15% minsup = 10%

L NOC NOFS NOC NOFS NOC NOFS

1 24 7 24 8 24 10

2 280 62 360 67 550 108

3 2277 477 2525 640 4558 964

4 6223 2178 9709 3333 18268 5912

5 9767 4806 18740 9372 40744 19568

6 6899 4726 19813 13479 56179 37219

7 2655 2179 11989 9499 52082 41639

8 668 655 4347 4019 33208 29817

9 118 118 1212 1199 15618 15242

10 7 7 220 220 5739 5725

11 - - 21 21 1455 1455

12 - - 1 1 23 23

13 - - - - 15 15

Total 28918 15215 68961 41858 228663 157897

L:level(number of vertices included in frequent subgraph)

NOC:number of candidates, NOFS:number of frequent graphs

the 300 compounds were selected for the analysis, of which 185 compounds have
positive carcinogenesis and the rests are negative. Thus, the fraction of the car-
cinogenic compounds is 61.7%. The types of atoms involved in the compounds
are C, H, O, Cl, F, S and some cations, and the types of bonds are single, dou-
ble, aromatic and cation bonds. Each transaction data were preprocessed to add
arti�cial edges from each vertex to every other vertex that is within the dis-
tance of 6 edges. Each added edge has a label to indicate the distance between
the two vertices that are connected by the edge. This enables us to mine the
frequent cooccurrence of some speci�c structures at a speci�c distance within
6. The distance limit of 6 was determined based on the chemical insights that
the inuence of an atom does not usually propagate along the path more than 6
bonds in molecules of moderate sizes. Furthermore, an isolated vertex labeled by
the carcinogenesis class of the compound, i.e., \class vertex", is added to each
chemical structure graph.

The analysis was made on the same PC described in the previous section.
Table 1 shows the number of the candidate induced subgraphs (NOC) and that
of the discovered frequent induced subgraphs (NOF) for each level of the search,
i.e., the size of the induced subgraphs. In each minsup case, all frequent in-
duced subgraphs were exhaustively discovered. The computation time required
to complete the search was far longer for the minsup of smaller value, and was
almost 8 days for 10%, while it was only about 40 minutes for 20%. The size of
the largest frequent induced subgraph discovered in the case of 10% was 13.

In Figure 5, the con�dence deviation � of an association rule Gb ) Gh is
given as follows.

� =

(
conf(Gb ) Gh)� frp if Gh contains a positive class vertex.

conf(Gb ) Gh)� frn if Gh contains a negative class vertex.
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Here, frp is the fraction of positive compounds in the data, i.e., 61.7% in this
case, and frn is that of negative compounds, i.e., 38.3% (=100%-61.7%). The
cover rate CR of a set of association rules is the fraction of chemical compounds
whose classes are derived by applying the rule set to the data. Given a value of
�th, a set of association rules each having � more than the �th is de�ned, and
CR of the rule set is calculated. As shown in Figure 5, the rule set derived for
the 10% threshold contains some rules having signi�cant con�dence. Accordingly,
the exhaustive search for low support threshold is considered to be very e�ective
to mine valuable rules.
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Figure 5: Relation of �th and CR.
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Figure 6: Examples of discovered rules.

Figure 6 shows some association rules obtained for the carcinogenesis class
under the support threshold 10%. The �rst rule is very simple, but indicates
that a sulfur atom plays an important role to suppress the carcinogenesis. In
the second rule, the symbol X of a vertex and ? of an edge indicate that their
labels are arbitrary. The third is an example of a less signi�cant but more com-
plex substructure involving a benzene ring. This is consistent with the chemical
knowledge that benzene rings frequently have the positive carcinogenesis.

5 Discussion and Conclusion

The largest graphs of the chemical compound discovered by AGM have the size
of 13 atoms. In contrast, the approach of ILP in conjunction with a levelwise
search proposed by Dehaspe et al. could mine the substructure consisting of 6
predicates at maximum equivalent to the size of a molecule consisting of only 3
atoms or so [3]. This fact shows the practical e�ciency of AGM for real world
problems. Further investigation on the computational e�ciency of AGM in terms
of the theoretical aspect remains for the future study.

In conclusion, a novel approach has been developed that can e�ciently mine
frequently appearing induced subgraphs in a given graph data set and the asso-
ciation rules among the frequent induced subgraphs. Its performance has been
evaluated for both the arti�cial simulation data and the real world chemical
carcinogenesis data. The powerful performance of this approach under some
practical conditions has been con�rmed through these evaluations.
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