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Abstract. Graph structured data arc abound in many practical ficlds
such as molecular structures of chemical compounds and information
flow patterns in the internet. In many cases, their intrinsic regularities
arc not captured by the features of individual vertices and edges but
by only the fecatures of substructures and their relations embedded in
the graphs. Mining such regularities has been tackled by some others.
Howcever, previous approaches have not been efficient enough to han-
dle real-world problems such as carcinogencsis predictions for chemical
compounds, and thus the obtained knowledge is limited for the cases
of quite simple regularities. This paper proposcs a novel approach to
more efficiently mine the association rules among the frequently appear-
ing substructures in a given graph data set. A transaction is a graph
involving the topological information among vertices and cdges, and is
represented by an adjacency matrix. The algorithm of the basket analysis
has been extended to handle the adjacency matrices (that include items
as a special case). Novel principles are introduced to uniquely order the
adjacency matrices and to efliciently find isomorphism among them. The
proposed approach finds association rules representing the co-occurrence
of substructurcs in the transactions. Its performance has been evaluated
for the artificial simulation data and the carcinogenesis data of Oxford
University and NTD. Its high efficiency has been confirmed for the size
of a real-world problem.
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1 Introduction

Mining knowledge from structured data is a major rescarch topic in recent data
mining study. The approach proposed by Agrawal and Srikant for mining sc-
quential patterns was onc of the initiating works in this field [1]. Since then
several approaches have been proposed from different angles for sequential or
structural data. Mannila et al. proposed an approach to mine frequent episodes
from sequences [2]. Shinatani and Kitsuregawa devised a fast mining algorithm
for scquential data using parallel processing [3]. Srikant ct al. used taxonomy
hicrarchy as background knowledge to mine association rules [4].

Sequence, association and taxonomy are typical data structures that appear
in real-world domains, but “graph structure” also frequently appears in real-
world data such as web links and chemical compounds structures. In the field of
chemistry, CASE and MultiCASE systems have been often used to discover char-
acteristic substructures of chemical compounds [3], [6]. Though these systers can
cfficiently find the substructures, the class of the substructures is limited to the
no-branching atom sequences. Wang and Liu proposed the mining of wider class
of substructures which are subtrees called schemas [7]. Though the proposed
algorithin is very efficient to mine frequent schemas from massive data, the min-
ing patterns arc still limited to acyclic graphs. To mine characteristic patterns
having general graph structures, the propositional classification techniques, e.g.,
(C4.5, the regression tree techniques, e.g., M5, and the inductive logic program-
ming (ILP) techniques have been applied in the carcinogenesis predictions of
chemical compounds [8], [9]. However, these approaches can discover only lim-
ited types of characteristic substructures, because the graph structures must be
pre-characterized by some specific features and /or ground instances of predicates
(e.g., a benzene ring is involved in the compound). This data preprocessing is in-
evitable for the propositional classification and regression tree techniques, since
they can handle only feature tables. This preprocessing is also necessary for ILP
techniques to reduce the computational complexity in the mining process.

Recently, a technique to mine the frequent substructures characterizing the
carcinogenesis of chemical compounds has been proposed without requiring any
conversion of substructures to specific features by Dehaspe et al. [10]. They
used the ILP framework combined with levelwise search to minimize the access
frequency to the database [11]. Since the efficiency achieved by this approach
is much better than the former ILP approaches, some new discovery of sub-
structures characterizing carcinogencsis was expected. However, the full secarch
space was still so large that the search had to be limited within the 6th level
where the substructures are represented with 6 predicates at maximum, and
they reported that significant substructures have not been obtained within the
scarch level. Some other rescarches have also developed the techniques to mine
the frequent substructures in graph data. The graph-based induction (GBI) is
an approach to seek the frequent patterns by iteratively chunking the vertex
pairs that frequently appear [12], [13]. SUBDUE is another approach to seek
the characteristic graph patterns to efficiently compress the original graph in
terms of MDL principle [14]. These approach doces not face the severe compu-
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tational complexity. However, it may miss some significant patterns, since the
scarch strategy is greedy. The use of the standard basket analysis has also been
proposcd [15]. Each graph is transformed into an itemset consisting of labeled
vertices and edges, then the basket analysis is applied. Though this approach
efficiently finds all frequent substructures and the association rules among them,
it works for only a limited case where all vertices in a graph arce distinct, i.e.,
all vertices have different labels, which is not the case for chemical compounds
analysis.

Though the task tackled by these works involves the problem of deciding
graph isomorphism which is known to be NP-complete, each work mines some
characteristic graph substructures by introducing the limitations on the search
space and /or the class of substructures. The objective of this paper is to propose
a novel approach to mine the frequent substructures and the association rules
from the general class of graph structured data inmore cfficient manner than
the preceding work. Moreover, we assess the performance of the approach for
the artificially simulated data and also for the carcinogenesis data of Oxford
University and National Toxicological Program (NTP) [16].

2  Principle of Mining Graph Substructures

In the field of mathematical graph theory, the problem to check the isomor-
phism between two given graphs has been extensively studied [17], [18]. Two
main methods have been used to solve this problem. The first method is called
the “brute force” in which a direct correspondence between the two graphs is
scarched. It repeats to take vertices from cach of the two graphs and check if
the adjacency between the vertices matches. If all adjacencies are matched, the
two graphs are known to be isomorphic. However, the computational complexity
required for this algorithm is non-polynomial order of the vertex number of the
graphs. The other method is to compute a unique canonical code for the two
graphs and comparce them. If they are isomorphic, the codes for the two graphs
match each other. This approach can efficiently reduce the computational com-
plexity, if a simple method to determine the canonical code of a graph can be
obtained.

However, the methods studied in the mathematical graph isomorphism prob-
lem are not directly applicable to our case, because the mathematical techniques
adopted there arc only to check if the two given graphs arc isomorphic. To scarch
all frequent subgraphs in a given graph data set, the isomorphism among all sub-
graphs of all data must be checked in a naive framework. Since the selection of the
subgraphs is combinatorial, we face the computational explosion even if we use
the efficient isomorphism checking method for each subgraph pair. To overcome
this difficulty, we have proposed an idea to introduce the mathematical graph
representation of “adjacency matrix” having binary values of the elements and
to combine it with an efficient levelwise search of the frequent canonical matrix
code [19]. The levelwise search is based on the extension of the Apriori algorithm
of the basket analysis [20]. However, this approach can not directly handle the
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graph data in which the edges have label information. In this paper, the represen-
tation of the adjacency matrix is further extended to describe more general class
of the graphs by introducing multiple values in the matrix clements. Both ver-
tices and edges can have labels. The edges can be either directed or undirected.
The graph can have loops (including self-loops), and can consist of unconnected
multiple subgraphs. A novel technique to reduce the scarch space for finding an
isomorphic subgraph in a large graph is also introduced. We call our proposing
approach as “Apriori-based Graph Mining”, ABG for short.

2.1 Representation of Graph Structures

A graph in which the vertices and edges have labels is mathematically defined
as follows.

Definition 1 (Graph having Labels) Given a set of vertices V{(G) = {vy,va,
o Uk b, a sel of edges connecting some vertex pairs in V(GQ); E(G) = {e, =

(i, v7)|vi,v; € V(G)}, @ set of vertex labels L(V(G)) = {lb(zu)Nvi e V(G)}
and a set of edge labels L(E(G)) = {lb(ey)|Ven, € E(G)}, then a graph G is
represented as

G = (V(G), E(G), L(V(G)), L(E(G))).

This graph is represented by an adjacency matrix which is a very well known
representation in mathematical graph theory [17].

Definition 2 (Adjacency Matrix) Given a graph G = (V(G), E(G), L(V(G)),
L(E(G))), the adjacency matriz X has the following (i, j)-element, z;;,

num(lb) ;ep, = (vi,v;) € E(G) and 1b = lb(ey,)
"= {O i (vi,05) €E(G) ’

where num(lb) is an integer arbitrarily assigned to a label value lb.

This transformation from G to X does not require much computational effort.

Definition 3 (Size of a Graph) The “size” of a graph G is the number of
vertices in V(G), i.e., k in Definition 1.

The adjacency matrix of a graph whose size is k is noted as Xy, and the graph

as G(Xg).

Definition 4 (Graph Transaction and Graph Data) A graph G = (V(G),
E(G), L(V(Q)), L{E(G))) is a transaction, and graph data GD is a set of the
transactions, where GD = {G,G1,....G,}.

The labels of the edges and the vertices of an example graph transaction
depicted in Figure 1 (a) are defined in the following manner.

b{v1) = Vi, 1b(ve) = Vo, lb(vg) = Vi
b(ey) = Ey,lb(ea) = Eq,1b(es) = By
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b(v)=V,  Ib(ey)

Ib(vi)=Vy  Ib(cy)

= b, =k,
Ib(e,)
W
Ib(v;)
=V,
(v2)1bv )=,
(a) (c)

Fig. 1. A graph example.

Given the integer assignment to label values of the cdges as num(lb(e))) =
numn(E)) = 1 and num(lb(es)) = num(E>) = 2, its adjacency matrix is repre-
sented as follows.

Vi/f0 0 0
w1 o o). (1)
vi\o 1 2

The representation of the adjacency matrix depends on the assignment of
each vertex to the i-th row (i-th column). To reduce the variants of the repre-
sentations and increase the efficiency of the code matching described later, the
vertices arc sorted according to the numbers of their labels.

Definition 5 (Vertex-sorted Adjacency Matrix) The adjacency matriz Xy
of the graph G(Xy) is vertex-sorted if

num(lb(v;)) < num(lb(vig)) fori=1,2,..,k—1.

The vertices va and vy of Eq.(1) are permuted in this ordering, and the vertex-
sorted adjacency matrix is represented by

Vi ViV
Vif0 0 0
vilo 2 1
V,a\1 0 0

The above explanation is for directed graphs, but the similar method is ap-
plied to undirected graphs. The difference from directed graphs is that the ad-
jacency matrix becomes symmetric. Assuming that the edges of the graph in
Figure 1 do not have a direction, the vertex-sorted adjacency matrix becomes as

Vi ViV
Vi/0 0 1
vilo 2 1
A1 1 0
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In the standard basket analysis, items within an itcmsct arc kept in lexico-
graphic order [20]. This cnables an efficient control of the generation of candidate
itemsets. However, the vertex-sorted adjacency matrices do not have such lex-
icographic order. Thus, a coding method of the adjacency matrices need to be
introduced.

Definition 6 (Code of Adjacency Matrix) In case of an undirected graph,
the code code(Xy) of a vertex-sorted adjacency matriz Xy;

L1, 12 13 Tk
T2l T22 T23 " T2k
X = T31 3,2 3.3 *°° T3k
Tl Th2 Th3 " Thkk

is defined as
COdG(Xk,) = T1,121,2L2201,3223L3.3L1.4 " LTh—1,kLk,k;

where the digits are obtained by scanning the elements along the columns at the
upper triangular part of Xy. In case of a directed graph, it is defined as

(3()(](€(Xk) = T1,1X12L2 102201 3031 X23L32  Lh—1,kTk k—1Tk k,

where the digits are obtained similarly to the undirected case, but the diagonally
symmetric element x;; is added after each x;; when i # j.

The upper left clements of the matrix locate at higher digits in both coding
mecthods. The ordering of the adjacency matrices based on this code efficiently
reduces the search space in the levelwise search as shown later.

The method proposed in this paper discovers substructures frequently ap-
pearing in the graph transaction data GD. The rigorous definition of the sub-
structure is given as follows.

Definition 7 (Induced Subraph) Given a graph G = (V(G), E ;
L(E(G))), an induced subgraph of G, G, = (V(G,), E(G,), L(V(G,)), L{E(G,))),
is a graph satisfying the following conditions.

V(G,) C V(G), E(G,) € B(G),

Yu,v € V(G,), (u,v) € BE(G,) < (u,v) € E(G).
When G, is an induced subgraph of G, it is denoted as G, C G.
For instance, the graph depicted in Figure 1 (b) is an induced subgraph of (a),
but (¢) is not, because the edge es in (a) is not present in (c).

Furthermore, the two indecies which are identical to the definitions of “sup-
port” and “confidence” in the basket analysis are defined.
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Definition 8 (Support and Confidence) Given a graph G, the support of
G is defined as

number of graph transactions G where G3 C G € GD
sup(Gy) =

total number of graph transactions G € GD

Given two induced subgraphs Gy and Gy, the confidence of the association rule
Gy = Gy, is defined as

number of graphs G where G, UG, C G € GD

conf(Gy = Gy) = -
HGs 2 number of graphs G where G, C G € GD

If the value of sup(G) is more than a threshold value minsup, G is called as
“frequent induced subgraph”.

2.2 Algorithm

candidate generation Similarly to the Apriori algorithm, the candidate gen-
cration of the frequent induced subgraph is made by the levelwise scarch in terms
of the size of the subgraph. Let X and Y}, be vertex-sorted adjacency matrices of
two frequent induced graphs G(Xg) and G(Yz) of size k, where the vertices have
been lexicographically ordered according to their label values. If both G(X)
and G(Y3) have equal clements of the matrices except for the clements of the
k-th row and the k-th column, then they are joined to generate Zgy .

X, = Xe1 2y Y, = X1y
’ ) wpp )" Ys Uk )’

X1 @ Y, X, Ui
T oy N — ’
ijq = m2 Thk 4k’,/c+l = 25 kb1 s (2)
,,‘ 0,k
. 2 2 T j
Y2 Zhtlk Ykk Y3 Zhilk| Ykk

where X is the adjacency matrix representing the graph whose size is k—1, x;
and y; (i = 1,2) are (k—1) x 1 columun vectors. Xy is called the “first matrix” and
Yy the “second matrix”. The following relations hold among the vertex-sorted
adjacency matrices Xy, Yy and Zg4q.

Ib(v;;v; € V(IG(Xy)) = b(v;;v; € V(G(YR)) = 1b(v;;0; € V(IG(Zp41))),

Ib(vi;v; € VIG(Xg)) < Ib(vipi;vi € V(G(Xy)),
Ib(vg; v € V(G(XE)) = (v v € V(G(Zaa)), (3)
(v ve € V(G(YL)) = W(vgt1;vp41 € V(G(Zi11)),
(v vp € V(G(XR)) < b(vg; v € V(G(Yg))-

Here, ¢ = 1,---,k — 1. 2341 and 2p4q% are not determined by X; and Y.
Each can take every integer value num(lb) corresponding to each edge label b
or 0 corresponding to the case that no edge exists between v and vgy1. In case
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of an undirccted graph, 2z ry1 and zzy;  must have an identical value. Note
that when the labels of the k-th vertices vy, of G(X},) and G(Y}) arc the same,
exchanging Xy, and Yy (i.e., taking Y} as the first matrix and X}, as the second
matrix), produces redundant adjacent matrices. In order to avoid this redundant
generation, the two adjacency matrices are joined only when Eq.(4) is satisfied.
The vertex-sorted adjacency matrix generated under this condition is called a
“normal form?”.

code(the first matrix) < code(the sccond matrix) 4)

In the standard basket analysis, the (k + 1)-itemset becomes a candidate
frequent itemset only when all the k-sub-itemsets are confirmed to be frequent
itemsets. Similarly, the graph G of size k + 1 is a candidate of frequent induced
subgraphs only when all adjacency matrices generated by removing from the
graph G the i-th vertex v; (1 < i < k + 1) and all its connected links arce
confirmed to be frequent induced subgraphs of the size k. As this algorithm
generates only adjacency matrices of the normal form in the earlier (smaller)
k-levels, if the adjacency matrix of the graph generated by removing the i-th
vertex v; is non-normal form, it must be transformed to a normal form to check
if it matches one of the normal form matrices found carlier.

An adjacency matrix of a non-normal form is transformed into a normal form
by reconstructing the matrix structure in a bottom up manner. The procedure
is depicted in the example of Figure 2. It shows how the non-normal adjacency
matrix X, is transformed to a normal form. The numbers below the adjacency
matrices in this figure show the corresponding codes. It starts with the adjacency
matrices representing the induced subgraphs of Xy consisting of one vertex shown
at the level of (A) in Figure 2. Which matrices to join are limited to the pairs of
the matrix having the minimum code and the others according to the constraint
Eq.(4) of the normal form. In this case, we arbitrary choose a matrix pair of v
and the others as shown at (B) in the figure, since all matrices have an identical
code. The values which can not be determined when joining, for example (1,2)-
element and (2,1)-element of the matrix consisting of v; and vy, are taken from
212 and 9 of Xy as indicated at (C) to maintain the isomorphism with the
original X4. Next, matrices whose graphs have two nodes are joined as shown
at (D). Because the leftmost matrix is one of the matrices having the minimum
code, this becomes the first matrix, and the others become the sccond matrices
as shown at (E). After joining these matrices, (1,3)-clement and (3,1)-clement
are determined by X4, and we obtain two 3 x 3 matrices which is shown at (F).
Because the code 000010 of the right matrix is less than that of the left, the right
matrix becomes the first matrix and the other the sccond matrix. This process
continues until a normal form having the same size with the original X is found.
As cach level of the reconstruction follows the constraints of Eq.(2),(3) and (4),
the normal form of the original matrix is obtained. Because this reconstruction
is the set of permutations of the raws and the columns of the original matrix
X, the normal form X has the realation of

Xllq = (Tk)TXka
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where T3, is the transformation madtrix.

(B) Vi V, Vi v,
\[g 0 (0] [0) «=(a)
AN C)
1 O@ 0 (
N ) )
5 (]) 120 09
000

‘0001200120
X,:adjacency matrix

of non-normal form (E) [ Y

VIV, Y,
0001 ) .
0012 | X,adjaccncy matrix
0101 transformed to the
1210 normal form

0000101210

Fig. 2. Transformation into normal form.

canonical from After all candidate induced subgraphs are derived, the support
value of each candidate is counted in the database. However, the normal form
representation is in general not unique for a graph. For instance, the following
two matrices which arc both normal forms represent an identical graph.

001 011
Xs=(001]|,v5=1{100
110 100

If the support value is counted for cach representation independently, it has to
be summed up to obtain the correct support value for the correspondig graph.
To perform this summation efficiently, all normal forms for an identical induced
subgraph must be indexed.

For this purpose, canonical form is defined for normal adjacency matrices
representing an identical induced subgraph, and an efficient method to index
each normal form to its canonical form is introduced.

Definition 9 (Canonical Form) Given a set NF(G) of all normal forms of
adjacency matrices representing an identical graph G, its canonical form X, is
defined as X having the minimum code number in N F(G), i.e.,

X, = ar in  code(X).
=0 i 0%e(Y)

Figure 3 shows the algorithm to transform a given normal form to its canonical
form with a transformation matrix.
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1) forall X, in a set of candidate frequent graphs
2 XL =X,
3) for(m = 1;m < k;m + +) do begin
4)  if(Ib(vg; vertex of k-th raw (column) of X;) =
Ib(vsn; vertex of m-th raw (column) of X)) then do begin
5) if(code(X},) > code((T7 S7)" X1 (T S7)) then do begin

6 X —(I7Sy) X IrSy )

7) if(the canonical form of X}, is known) then do begin

8) X, = S5, X, S},; //where S is the matrix to transform X},
in r.h.s. to its canonical form

9) break;

10) end

11) end

12) end

13) end

14) Canonical form of X}, is X;

15) end

Fig. 3. An algorithm to derive canonical form

We assume that all the transformation matrices S to the canonical form
from the normal forms of every frequent induced subgraph of size k-1 are known.
Let X7, be the matrix obtained by removing the m-th vertex v, (1 <m < k)
from G(Xy). X}, is transformed to one of its normal forms, X;™,, by the pro-
cedure explained in Figure 2, and thus its transformation matrix T} | is known.
Furthermore, let Sg—1 of X;™, be Si* |, then the transformed canonical form is
represented by (T,:’i 1St l)TX o T S The canonical form Xop of Xy, and
the matrices S, TY" to transform Xj to X, arc obtained from S;* |, T;", by
the following expressions. The detailed proof of this transformation can be scen

in [21).
sii0<i<k—Tland0<j<k—1,
8i; =41 i=~Fkandj=k

0  otherwise,

i i<mand j#k,

— ty 1 > m and / # k,
1 t=m and j = k,
0 otherwisc,

X. = arg min . code((TP ST X (T S)),

m=1,---,

where s;5,s77,t;; and t7} are the elements of matrix S, S |, T} and T},

respectively. 7775} which minimize the code is Sy of Xj.
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frequency calculation Frequency of cach candidate induced subgraph is counted
by scanning the database after generating all the candidates of frequent induced
subgraphs and obtaining their canonical forms. Figure 4 shows an example to
explain the support counting for a directed graph transaction G(X) given in the
database. We assume that all the subgraphs of size 2 except the one whose code
is 0110 are known to be frequent induced subgraphs, and the set C'3 of the adja-
cency matrices of canonical form for the candidate frequent induced subgraphs of
size 3 have alrcady been obtained. The basic task is to cnumerate the adjacency
matrices of all subgraphs of size 3 embedded in X and to check if some of them
are in (3. Because the adjacency matrices of normal form cover all subgraphs
in G(X), the enumeration is limited to the normal form for efficiency by ap-
plying the procedure similar to Figure 2. The procedure starts from level 1 and
generates the adjacency matrices of the normal form of size 1. In level 2, since
the leftmost adjacency matrix having the code 0110 is not the frequent induced
subgraph, this matrix is not further expanded. In addition, for two matrices
to be joined, the submatrices obtained by removing the last raw and column
respectively from them must be identical. Conscquently, only two joins in this
level is admitted to generate the adjacency matrices of size 3 of the normal
form. Finally, if the subgraphs having the codes 000000100 and/or 020010100
are known to correspond to the canonical forms in C3 by the aforementioned
transformation matrices, the counters of the canonical forms are incremented by
1. Even when there are more than one isomorphic subgraph in the given graph
G, the counter is incremented by 1 as the default setting in our program. This
is based on the definition of support that is the fraction of the number of graph
transactions containing the induced subgraph to all graph transactions in the
database. Counting the number of occurences of the identical induced subgraph
in the search tree is also straightforward and is optional.

VY,V
v, vl V2 V3 V4
v, (o] (o] (o] (o]

X " 0 0 0 0
vy 0000

0 141 0002000010200 V®2 Viv3 V1v4 v2v3 v2v4 v3iv4

ool (oo)(o3)(5s) (o)
B oJlooJloo)loo)loo)loo
num(E1)=1 0110 0000 0000 0200 0100 0200

num(iZ)ZZ V V

1V3V 2V3V:
000 021
00 :} 001
000 000
000000100 020010100

Fig. 4. An example of support counting.
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2.3 Implementation

The algorithm explained in the previous subsections is implemented using a tric
data structure as depicted in Figure 5. This is an example of undirected graphs
that have two vertex labels Vi, Vo and a unique edge label Ey. A node of the
trie corresponds to a matrix of the normal form. The upper literal and the lower
numeral in each node show respectively the vertex label sequence and the code
of the adjacency matrix. The depth of the trie corresponds to the size of the
subgraphs, and for cach node in the tric its parent node is the first matrix to
generate the matrix of the node. In this trie structure, the adjacency matrices
are generated primarily in the lexicographic order of the literals and secondarily
in the ascending order of the code numerals. This efficiently reduces the search
space of the join, since the first matrix must be joined with only the second
matrix locating in the right hand side of the same level.

First, the support values of the graphs of size 1 is calculated in the root,
and these arc joined using the method described in the previous subsection.
Next, each vertex of the graph constructed by the join operation is removed in
sequence, and the resulting graphs are checked to see if all of them are frequent
induced subgraphs. When all of them are frequent induced subgraphs,; the joined
graph is counsidered to be a candidate frequent induced subgraph. Then the
canonical form is obtained for cach candidate and its support valuc is counted in
the levelwise manner by accessing the database. If the value exceeds the threshold
minsup, the subgraph is a frequent induced subgraph. The above process is
repeated stepwisely from the root downward. Note that the candidate generation
and the support calculation interleave, and thus the node whose support is below
the support threshold is never expanded. Once all frequent induced subgraphs
are found, the association rules among them whose confidence values are more
than a given confidence threshold are enumerated by using the algorithm similar
to the standard basket analysis.

Fig. 5. Trie data structure.



Currently under submission to KDD Journal and not for distribution. 13

3 Performance Evaluation

The performance of the method was examined using an artificially generated
graph transaction data. The machine used is a PC with 400MHz CPU and
128MB main memory. Table 1 summarizes the default parameter values of the
test data that are used in the experiments. The size of each transaction is de-
termined by the gaussian distribution with the average |T| and the standard
deviation 1. The vertex labels are randomly determined with equal probability.
The cdges are attached randomly with the probability of p. L basic patterns of
the average size |I| are generated, and one of them is randomly overlaid on each
transaction. The two groups of the test data, one for the directed graph and
the other for the undirected graph, are prepared. The direction of the edges are
given randormly in the former group.

Table 1. Dcfault specification of paramecter sctting in test data.

Parameter|Definition Base value
D Nuber of graphs 10,000

|T| Average graph size 10

L Number of basic subgraphs 10

|| Average basic subgraph size 4

Ny Number of vertex labels 3

N. Number of cdge labels 1

p Edge existence probability 50%
minsup |Minimum support 10%

Figures 6, 7, 8 and 9 show the results of computation time for different num-
ber of transactions, number of vertex labels, minimum support threshold and
average transaction size for both directed and undirected graphs, respectively. In
cvery parameter sctting, the required computational time and the number of the
discovered frequent induced subgraphs are less in the case of directed graph. Be-
cause the number of possible subgraph patterns is larger due to existence of edge
direction, the frequency of each subgraph pattern is smaller. This also reduces
the required computation for scarch. Figure 6 shows that the number of discov-
cred frequent induced subgraphs remain nearly constant, and the computation
time is proportional to the number of graph data. Computation time rapidly de-
creases as the number of vertex labels increases as shown in Figure 7 because the
increase in the vertex labels also increases the number of possible patterns. How-
cver, the number of the frequent induced subgraphs does not decrease rapidly.
This is because the basic subgraphs arc artificially crubedded in these simulation
data, and thus, the number of the frequent induced subgraphs does not decrease
below a certain level. Computation time and the number of frequent induced
subgraphs increase when the minimum support is reduced as shown in Figure 8.
However, their increase becomes insignificant at very small values of the min-
imum support, because there become no more undiscovered frequent induced
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subgraphs at the samll support values. Though we have not checked due to the
limitation of the tractable computation time in the experiments, if the minimum
support is far too small, the computation time and the number of frequent in-
duced subgraphs may increase considerablely again because the algorithm will
pick up the random noise patterns. Figure 9 indicates the exponential increase
in computation time with the increase in the average size of the graph trans-
actions in the data. This is because the size of the graph transaction dircctly
affects the combinatorial complexity of the subgraphs. In short summary, the
proposed algorithm does not show intractable computational complexity except
the cases for graphs of large size in the database. This character is considered
to be suitable for the chemical compound structure analysis such as the car-
cinogenesis prediction that only requires the handling of graph transactions of
modecrate size.
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4 Application to Chemical Analysis

Many new chemical compounds arce being synthesized in secking for better life
and health, but their toxicity is also causing problems. The need for effectively
evaluating their effects on living bodies and environments such as toxicity, re-
solvability and condensationability is called for. However, the experiments on
living bodies and environments are quite expensive and very time consuming,
and thus it is somectimes prohibitive to rely solely on experiments from both

Computation time[sec] (lines}
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cconomical and efficiency point of view. It will be extremely uscful if some of
these propertics can be shown predictive by the structure of the chemical sub-
stances before being actually synthesized. The proposed approach was applied to
chemical carcinogenesis analysis which is a challenge topic proposed in LJCAI-97
by Srinisavan et al. [16]. The task is to find structures typical to carcinogen of
organic chlorides.

Though many studies have been reported, most of the works were to find
carcinogenesis conditions that arc characterized by man-made features on the
structure such as cxistence of benzene ring and chlorine [8], [9]. This approach
may miss scnsitive structures which arc unknown by human experts. In contrast,
Dehaspe et al. tried to mine carcinogenic substructures from the direct represen-
tation of the chemical structures in form of the first order predicates [10]. They
used ILP in conjunction with a levelwise search to improve the search efficiency.
Howcver, the scarch space is still large that only the substructure descriptions
of short length consisting of six predicates at maximum were found within a
tractable computation time even by the improved search technique. These de-
scriptions represent small molecular substructures consisting of only 3 atoms or
so. In this section, we assess the power of our proposed method in terms of the
computational cfficiency and the size of the discovered chemical substructures
which indicate positive or negative carcinogencsis.

The objective data were obtained from the website of National Toxicology
Program (NTP). Many chemical compounds do not have the description of car-
cinogenesis classes of positive and negative in the data sct, thus we have added
the class information obtained from the website of Oxford University. Totally,
the 300 compounds whose classes are known were selected for the analysis from
the 315 compounds in the original data, of which 185 compounds have positive
carcinogenesis and the rests arc negative. Thus, the fraction of the carcinogenic
compounds is 61.7%. The types of atoms involved in the compounds are C, H,
0, Cl, F, S and some cations, and the types of bonds are single, double, aromatic
and cation bonds. Each transaction data were preprocessed to add artificial edges
from each vertex to every other vertex that is within the distance of 6 edges as
depicted in Figure 10. In the figure, only the edges added from an oxygen to the
other atoms arc shown. Each added edge has a label to indicate the distance
between the two vertices that are connected by the edge. This enables to mine
the frequent cooccurrence of some specific structures at a specific distance within
6. The distance limit of 6 was determined based on the chemical insights that
the influence of an atom does not usually propagate along the path more than 6
bonds in molecules of moderate sizes. Furthermore, an isolated vertex labeled by
the carcinogenesis class of the compound, i.e., “class vertex”, is added to cach
chemical structure graph. For instance, the class vertex labeled as negative is
added in Figure 10, since its carcinogenesis is negative.

The analysis was made on the same PC described in the previous section.
Table 2 shows the number of the candidate induced subgraphs (NOC) and that
of the discovered frequent induced subgraphs (NOF) for each level of the search,
i.e., the size of the induced subgraphs. The threshold value minsup was sct to
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Fig. 10. Addition of artificial edges.

be 10%, 15% and 20%. In cach minsup case, all frequent induced subgraphs
were exhaustively discovered. The computation time required to complete the
scarch was far longer for the minsup of smaller value, and was almost 8 days
for 10%, while it was only about 40 minutes for 20%. The size of the largest
frequent induced subgraph discovered in the case of 10% was 13. This is almost
equivalent to the description length of 26 predicates in PROGOL [10]. The pro-
posced approach is very powerful to exhaustively mine quite large and complex
substructures.

Table 2. Results for three minsup values.

minsup — 20% |minsup = 15%|  minsup = 10%
L |NOC NOFS |[NOC XNOFS | NOC NOFS
1 24 7 24 8 24 10
2 280 62 360 67 350 108
3 12277 477 2525 640 4558 964
4 16223 2178 | 9709 3333 | 18268 5912
5 19767 4806 |18740 9372 |40744 19568
6 | 6899 4726 |19813 13479 | 56179 37219
7 12655 2179 |11989 9499 |52082 41639
8 668 655 4347 4019 | 33208 29817
9 118 118 1212 1199 | 15618 15242
10 7 7 220 220 5739 5725
11 - - 21 21 1455 1435
12 - - 1 1 23 23
13 - - - - 15 15
Total|28918 15215 (68961 41858 |228663 157897

L:level(number of vertices included in frequent subgraph)
NOC:number of candidates
NOFS:number of frequent graphs

Figure 11 shows the relation between the confidence deviation A and the
cover rate C'R of the discovered association rules whose heads contain the class
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vertices. A of an association rule Gy, = Gy, is given as follows.

conf(Gy = Gp) — fry
conf(Gy, = G},) — fr,

if G, containg a positive class vertex.

if Gj, contains a negative class vertex.

Here, fr, is the fraction of positive compounds in the data, i.e., 61.7% in this
case, and fr, is that of negative compounds, i.e., 38.3% (=100%-61.7%). CR of
a set of association rules is the fraction of graphs (chemical compounds) whose
classes are derived by applying the rule set to the data. Given a value of Ay,
a sct of association rules cach having A more than the A,y is defined, and CR
of the rule set is calculated. As shown in Figure 11, the set of all discovered
association rules covers all data in cach case of the support threshold. However,
the rule sets obtained for the higher support thresholds do not contain rules
having significantly high or low confidence. In contrast, the rule set derived for
the 10% threshold involves some rules having significant confidence. Accordingly,

the exhaustive scarch for low support threshold is considered to be very effective

to mine valuable rules.
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Fig. 11. Relation between A, and cover rate CR.

Figure 12 shows some association rules obtained for the carcinogencsis class.
The first rule is the most significant association rule having A = 32.2% obtained
for the support threshold 10%. This is very simple, but indicates that a sulfur
atom plays an important role to suppress the carcinogenesis. The second rule
shows a quite complex substructure of positive carcinogenesis having moderately
high significance. The symbol X of a vertex and 7 of an edge indicate that their
labels are arbitrary, in other words, a specific type of an atom and a bond at these
locations do not influence the carcinogenesis, but some atom and bond must be
there. The third is an example of a less significant but more complex substructure
involving a benzene ring. Many other rules also involve benzene rings. This is

consistent with the chemical knowledge that benzene rings frequently have a
positive cffect on the carcinogenesis.
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S=> Negative
sup=10.3%, conf=70.5%,A=32.2%
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sup=10.3%, con[=77.5%, A=15.8%

)f*C
X

=> Positive
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sup=10.3%. conf=73.8%, A=12.1%

Fig. 12. Examples of discovered association rules.

5 Discussion

Dehaspe et al. claimed that the causation of chemical carcinogenesis is highly
complex with many separate mechanisms involved [10]. In this study, the associa-
tion between the chemical substructures and the carcinogenesis was investigated
exhaustively, but the strong significance of the association was not observed
except the case of the sulfur. This fact strengthens their claim. However, the re-
sultant association rules obtained by the proposed approach indicate that quite
complex chemical substructures have contributions to some degree to the posi-
tive and negative carcinogenesis. We also applied our approach to the chemical
compound data of mutagenesis [22]. The chemical mechanism to cause the mu-
tagenesis is considered among chemists to be more direct and simpler. In fact,
our approach found quite significant and complex substructures in this case [23].

The efficiency of the proposed algorithim is higher than the past approaches
which try to mine the complete set of frequent subgraphs. However, the required
computation time easily becomes intractable when our approach is applied to the
graphs having large sizes. A major portion of the required computation time is
causcd by the scarch for the parts in the given graphs which are isomorphic with
the candidate frequent induced subgraphs. In the field of mathematical graph
theory, several methods to enhance the efficiency of the isomorphism checking
between two given graphs have been proposed. These introduced the use of the
invariance of the graphs [18], [24]. Though the search of the isomorphic part in a
large graph is different from the isomorphism checking between two graphs, the
usc of the graph invariance has a possibility to improve the scarch efficiency.



Currently under submission to KDD Journal and not for distribution. 19

6 Conclusion

A novel approach was proposed that can efficiently mine frequently appearing
induced subgraphs in a given graph data set and the association rules among
the frequent induced subgraphs. In this approach, a graph is represented in form
of an adjacency matrix. The matrices are uniquely ordered, and isomorphism
among the subgraphs of the given graph transactions arc cfficiently found. Its
performance has been evaluated for both the artificial simulation data and the
real world chemical carcinogenesis data. The powerful performance of this ap-
proach has been confirmed through these evaluation.
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