On the Editing Distance between Undirected
Acyclic Graphs and Related Problems®*

Kaizhong Zhang' Jason T. L. Wang* Dennis Shasha®

December 28, 1994

1 Introduction

Problem We consider the problem of comparing CUAL graphs (Connected, Undirected, Acyclic
graphs with nodes being Labeled).! Suppose we define the distance between two CUAL graphs
to be the weighted number (the user chooses the weighting) of edit operations (insert node, delete
node and relabel node) to transform one graph to the other. By reduction from exact cover by
3-sets, one can show that finding the distance between two graphs is NP-hard. In view of the
hardness of the problem, we propose a constrained distance metric, called the degree-2 distance,
for graphs by requiring that any node to be inserted (deleted) have no more than 2 neighbors. As
will become clear, this constraint is sensible in defining the edit operations on graphs. Further,
the measure is a natural extension of the edit distance for strings [22] and Selkow’s distance for
trees [15].

Main Results We develop algorithms to find the degree-2 distance between a class of lim-
ited graphs, including CUAL graphs, planar CUAL graphs, unordered trees and ordered trees.
(A planar CUAL graph is one that can be embedded in the plane in such a way that the edges
of the embedding intersect only at the nodes of the graph. An unordered tree is a rooted tree
in which the order among siblings is unimportant.) Let Gy and G5 be two given graphs. Let
N;, @ = 1,2, represent the number of nodes in G;. Let deg(n) denote the number of neighbors
of node n (in the rooted tree case, deg(n) is defined as the number of n’s children, excluding
n’s parent); d; = max,eq, deg(n). Table 1 summarizes the asymptotic time complexities of our
algorithms for finding the degree-2 distance between G and G5 for the general weighting and

*This work was supported, in part, by the National Science Foundation under Grants IRI-9224601 and IRI-
9224602, by the Office of Naval Research under Grant N00014-92-J-1719, by the Natural Sciences and Engineering
Research Council of Canada under Grant OGP0046373, and by a grant from the AT&'T Foundation.

'Department of Computer Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7
(kzhang@csd.uwo.ca).

{Department of Computer and Information Science, New Jersey Institute of Technology, University Heights,
Newark, New Jersey 07102 (jason@vienna.njit.edu).

$Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York
10012 (shasha@cs.nyu.edu).

!Such graphs are also known as labeled free trees. When the context is clear, we refer to CUAL graphs simply
as graphs. Note that, in practice, edges of a graph may have labels. In that case, one can transform a labeled edge
between two nodes u and v to a labeled node connecting u and v.

integral weighting edit operations, respectively.

Limited Graph General Weighting Integral Weighting
CUAL Graph O(NN;D?) O(N,NoDvVDlog D)
Planar CUAL Graph ~ O(N;N3log D) O(N1N3log D)
Unordered Tree O(N1N3D) O(N1Nyv/Dlog D)
Ordered Tree O(N1N,) O(N1N,)

Table 1. Time complexities of the proposed algorithms for the limited
graphs; D = min{dy,ds>}.

Significance of the Work Undirected labeled graphs have long been used to represent two-
dimensional (2-D) chemical compounds and molecules in chemical information systems [2, 3].
Figure 1(a) shows two examples of 2-D compounds; each node in the graphs represents an atom
and each edge represents a bond. The compounds can be represented alternatively as two CUAL

graphs (Figure 1(b)).

G G
o
N— N—O
o o
@
O N— O Nn—o

(b)

Figure 1. (a) Two examples of chemical compounds [8]. N represents a nitrogen atom and
O represents an oxygen atom. Omitted node labels are carbon atoms (C). Hydrogen atoms
(H) are not included in the graph representations since their presence or absence can be de-
duced from the other information. (b) The same compounds can be represented as CUAL

graphs, with each ring being represented by a special node label R.

There are two common uses of the chemical information systems. The first, referred to as a
structure search, is to recognize if a compound has been included in the data file previously, and
if not, to register it in the file [12]. Here the root subroutine is based on graph isomorphism
algorithms. The second, referred to as a similarity search, is to find compounds that are similar

to a query structure [7, 23, 24]. Many similarity measures have been devised; they are usually
based on the number of atom, bond, or ring-centered substructural fragments found in common
in the query and in a compound. While these measures are often useful, they don’t capture many
of the interesting topological differences between two compounds, which play a key role in identi-
fying the difference in the compounds’ functionalities. Thus our work provides a complementary
measure capable of reflecting the structural differences between chemical compounds (except that
our graphs must be acyclic, so rings must be reduced to single nodes). We believe the presented
techniques can also contribute to comparison and search of 2-D and 3-D (macro)molecules in
protein and DNA structures [14].

Comparison to Past Research This paper generalizes the work on the edit distance be-
tween strings [6, 11, 13, 16, 20, 21, 25] and trees [19, 28, 29]. Various kinds of constrained and
generalized edit distance on strings and trees have been developed [1, 9, 10, 17, 27]. Our degree-2
distance, when applied to unordered trees, is a restricted form of the constrained distance pre-
viously reported in [27]. When applied to ordered trees, the degree-2 distance is a generalized
measure of the constrained distance originated from Selkow [17], though our algorithm has the
same asymptotic complexity as Selkow’s algorithm. (Selkow’s distance measure requires that all
node deletions and insertions occur at leaves i.e., with degree 1.) In this extended abstract, we
present algorithms for computing the degree-2 distance between two CUAL graphs and unordered
trees. (The result for the latter is used as a subroutine to calculate the former.) The entire set of
algorithms is in the full paper and is available from the authors. We have chosen to present these
two results, because we believe they are the most useful of our results to date for approximate
graph matching.

2 Preliminaries

2.1 Edit Operations on Graphs

There are three kinds of edit operations on graphs: relabel, delete and insert a node. Relabeling
node n means changing the label on n. Deleting a node n means making the neighbors of n (ex-
cept an arbitrarily specified neighbor n') become the neighbors of n’ and then removing n. (This
amounts to contraction of the edge between n and n’ [4] and making the resulting node have label
of n'.) Insert is the complement of delete. This means that inserting n as a neighbor of n’ makes
a subset of the current neighbors of n’ become the neighbors of n. We represent an edit operation
as a pair (u,v) # (A, A), sometimes written v — v. We call u — v a relabeling operation if v # A
and v # A; a delete operation if ¥ = A; and an insert operation if v = A. Let G5 be the graph
that results from the application of an edit operation © — v to graph Gy; this is written G = G,
via u — v. Let S be a sequence s1,83,...,s; of edit operations. S transforms graph G to graph
G' if there is a sequence of graphs Go, G1,..., G} such that G = Gy, G' = Gy and G;_1 = G; via
s; for 1 < ¢ < k. Let v be a cost function that assigns to each edit operation © — v a nonnegative
real number y(u — v). We require 7 to be a metric. By extension, the cost of the sequence 5,
denoted (), is simply the sum of costs of the constituent edit operations. The distance from
G to G', denoted A(G,G"), is the minimum cost of all sequences of edit operations taking G to G'.

Theorem 1. Finding A(G,G'") is NP-hard.
Proof. Similar to the NP-completeness proof given in [26]. O

2.2 Degree-2 Distance

In view of the hardness of the problem, we propose to impose the following constraint on the edit
operations: a node n can be deleted (inserted) only when deg(n) < 2.% Intuitively one can delete
either a leaf or a node n with two neighbors; in the latter case, after deleting n, we simply connect
its two neighbors together. When inserting n between two nodes n’ and n”, we remove the edge
between n’ and n” and make n the neighbor of both n’ and n”. These constrained edits will be
referred to as the degree-2 edit operations; they are natural in manipulating nodes and edges in
the updated graphs. We define the degree-2 distance between graph G and graph G’, denoted
0(G,G"), to be the minimum cost of all sequences of the degree-2 edit operations transforming G
to G'. Clearly 6 is a metric.

2.3 Mappings

The degree-2 edit operations correspond to a mapping, which is a graphical specification of what
edit operations apply to each node in the two graphs. For example, the mapping in Figure 2
shows a way to transform the CUAL graph G to the CUAL graph G’ given in Figure 1. It
corresponds to the sequence (delete (node with label O), insert (node with label O)).

G i G
S A
\R\/—/”// \R—/ 2
N TN
S._0-. -7 .0

Figure 2. A mapping from G to G’. Nodes in G not touched by a mapping line are to be
deleted; nodes in G’ not touched by a mapping line are to be inserted. The mapping shows
a way to transform G to G'.

To formalize the notion of mappings, we need some definitions. Let wu, v, w be three nodes in a
graph G; let [u,v] denote the path between node u and node v. Define the center of the three
nodes u, v, w, denoted center(u,v,w), to be the intersection node of the three paths [u,v], [v, w]
and [w,u]. Figure 3 illustrates the definition.

u

——
u v w

\ w

Figure 3. Illustrations of the center, which is represented by the bullet e.

Let g[i] represent the ¢th node of graph G according to some ordering (e.g., a depth-first search
order). Formally, a mapping from G to G’ is a triple (M, G,G’) (or simply M when the context
is clear), where M is any set of pairs of integers (¢, j) satisfying the following conditions:

L1<i<|G, 1<) <@,

2Thus, to delete a node n with deg(n) > 2, one has to first delete some of its neighbors to make its degree less
than or equal to 2 before removing it.

2. For any two pairs (i1,71) and (i2,72) in M, i1 = i3 iff j; = j2 (one-to-one).

3. For any three pairs (i1,71), (i2,72) and (i3,73) in M, (¢*,5*) is also in M where g[¢*] =

center(gli1], gliz], glis]) and ¢'[j*] = center(¢'[j1], 9’ []2],9 [73]) (center relationship preser-
vation).

The cost of M, denoted v(M), is the cost of deleting nodes of G not touched by a mapping
line plus the cost of inserting nodes of G’ not touched by a mapping line plus the cost of relabeling
nodes in those pairs related by mapping lines with different labels.

Lemma 1. Given S, a sequence S, Sa,...,5; of degree-2 edit operations from G to G', there
exists a mapping M from G to G' such that v(M) < v(5). Conversely, for any mapping M,
there exists a sequence of degree-2 edit operations S such that v(S)=~v(M).

Hence, 6(G,G') = min{y(M)|M is a mapping from G to G'}. As an example, consider again
the graphs G and G’ in Figure 2. The mapping in the figure is a minimum cost mapping and

§(G,G') = 2.

3 Algorithms

We first present the algorithm for finding the degree-2 distance between two rooted unordered
trees and then extend the algorithm to handle graphs.

3.1 The Algorithm for Unordered Trees

For notational convenience, in this subsection we use T rather than G to represent a rooted
unordered tree. Let {[i] denote the ith node of T" according to the depth-first search order. 7]
represents the subtree rooted at ¢[i] and F[i] represents the forest obtained by deleting ¢[¢] from
T[i]. Let Ty and T3 be two rooted unordered trees. We use t[i1], {1[%2], . . ., {1[in,;] to represent
the children of ¢;[¢] in T1[z] and use ¢3[j1],%2[J2],- -, t2[jn,] to represent the children of #,[j] in
T5[j]. When applied to the rooted unordered trees 17 and 1%, the mapping M defined in § 2.3
is exactly the same as the edit distance mapping between the unordered trees with the following
constraint: for any two pairs (¢1, j1) and (7, j2) in M, (%, 7*) is also in M where #1[¢*] = lea(t1[i1],
t1[e2]), t2[7*] = lea(tz[71], t2[72]) and lca(.) represents the least common ancestor of the indicated
nodes.> With this notion in mind, it’s easy to develop a dynamic programming algorithm for
rooted unordered trees. We now present several lemmas, which will be the basis of our algorithm.

Lemma 2. Foralll <i< Ny and1 < j< Ny,
(i) 6(0,0) = 0;

(i) 8(T3i],9) = 5(F1[] D)+ 7 (tfi] = A);

(i) 6(F1[1],0) = 325y 6(Tali], 0);

(iv) 6(0, T3[5]) = 5(@ FQ[1)+ 7(A = t2[5]);

(v) 6(0, F3[4]) = 24Ly 6(0, Tulji])-

?An edit distance mapping M. between two rooted unordered trees satisfies the node one-to-one relationship
and preserves the ancestor relationship, i.e., supposing u is mapped to v and z is mapped to y in M., u is an
ancestor of z iff v is an ancestor of y [18].

Lemma 3. Foralll <i< Ny and1 < j< Ny,

([2]7) + m1111§s§n¢ {6(T1[is]7 TQ[J]) - 6(T1[is]7 Q))}
§(Th[d], To[s]) = min ¢ 6(0, To[j]) + miny<s<n, {6(T1[2], To[5e]) — 6(0, Talj:]) }
8(F1[1], F2[5]) + y(tald] — t2[5])

Proof. Let M be a minimum-cost mapping from 7i[¢] to T3[j]. There are four cases to be
considered:

Case 1. i ¢ M and 7 € M. Let (z,7) be in M. Thus #1[z] must be a node in Fi[i]. Let

t1[ts] be the child of #1[¢] on the path from #1[z] to t1[¢]. Thus 6(711[i], T2[j]) = 6(T1[is], T2[7])

+ 6(Tili1],0) + ... + 6(Ti[is=1],0) + 6(Ti[is41],9) + ... + 6(Ti[in,],0) + v(t1[i] — A). Since
6(T1[e],0) = v(ta[i] = A) + 203t 6(Tu[ek],), we can rewrite the right hand side of the formula
as 6(T1[1],0) + 6(Tu[is], T2[j]) — 6(T1[is], D). The range of k is from 1 to n;; therefore we take the
minimum of the corresponding costs.

Case 2. 1 € M and j ¢ M. This is analogous to Case 1.

Case3. 1 € M and j € M. By the mapping conditions, (7, j) must be in M. Thus §(T1[¢], T2[j])
= §(B[i], Balj]) + (bl — ta[j]).

Case 4. i ¢ M and 7 ¢ M. We would have 8(T1[¢], T2[4]) = 6(Fi[i], Falf]) + v(ta[i] — A) —|—
(A — t3[4]). Since y(t1[t] — t2[4]) < v(t1[i] — A) + 7(A — t2[j]) (the triangle inequality), w
need not include this case in our formula. O

In calculating 6(F1[¢], F5[7]), notice that if two nodes ¢1[z1] and ¢;[z2] of T1[is] are in M, then by
the mapping conditions there must exist an integer ¢ such that the two nodes connected to t;[z4]
and 1q[zy], respectively, by the mapping lines of M are in T3[j;]. We try to find a best mapping
between the children of ¢;[i] and the children of #;[j] by constructing a weighted bipartite graph
BG as follows. Let U = {t1[i1], ..., t1[in]} and V' = {t2[51],. .., t2[jn,]}. Assign the weight for
each edge (11[is], t2[J¢]), denoted w((t1[ts],22[7¢])), 1 < s < n; and 1 < ¢ < nj, based on the
formula

w((talis) alg:])) = 8(Talis], 0) + &0, Talje]) — (T [is], Tolde])

Without loss of generality, assume n; < n;. To better bound the complexity of our algorithm, for
each node u € U, we only pick the top n; highest weighted edges touching on u and store these
edges as well as their end nodes in BG. Thus BG has at most n;n; edges and at most n; + n;n;
nodes. Let Ma be the maximum weighted matching in BG.

Lemma 4.
6(F1[i]7F2[j]):z_i:é(Tl[is]v@)—I'Z_]:‘S(@vTZ[jt])_ Y wl((wv))

Thus the problem of calculating 6(F}[¢], F3[7]) becomes that of finding the maximum weighted
matching in BG. One can solve the problem by using Gabow and Tarjan’s algorithm in [5].
Figure 4 summarizes the algorithm.

Algorithm A
Input: Unordered trees Ty and T5.
Output: §(71[7],15[j]) where 1 < i< Ny and 1 < j < Ny;
O(T1[N1],T2[N3]) = 6(T1,T3).
6(0,0) := 0;
for::=1to N; do
compute §(F1[i],0) and §(71[¢],) as in Lemma 2 (ii) (iii);
for j := 1 to Ns do
compute §(0, F3[4]) and §(0, T2[j]) as in Lemma 2 (iv) (v);
for::=1to N; do
for j := 1 to N> do
compute §(F1[i], F2[4]) as in Lemma 4;
compute 6(71[¢], Tz[j]) as in Lemma 3;

Figure 4. Algorithm for computing §(71,73) for two unordered trees 77 and 75.

Time Complexity The complexity of computing 6(71[7],13[j]) is, by Lemma 3, bounded by
O(n; + n;). In constructing BG for calculating é6(F[é], F3[j]), for each node v € U, it takes
O(n;) time to calculate the weights of the edges touching on w and pick the n; edges with the
highest weights. Thus, it takes a total of O(n;n;) time to construct BG. Let V' be the number of
nodes in BG and let E be the number of edges in BG. The complexity of finding the maximum
weighted matching in BG is O(min{n;, n;}(£ + V logV)) when the edges have general weights
and is O(vV Elog(VW)) when the edges have integral weights where W is the maximum weight
[5]. Without loss of generality, assume n; < n;. Then V' is at most n; + n;n; and £ is at most
n;n;. Suppose the node label alphabet for unordered trees is finite. Then the maximum edit cost
is finite. As a consequence, the maximum weight W in BG is bounded by ¢V for some constant
¢. Thus for the general weighting case, the complexity of computing 6(71[¢], 15[j]) for any pair
of i and j is bounded by O(n;nj + n;(n;n; + VlogV)). V = min{n; + n;, n; + n?}, and therefore
logV = logn;. Thus the complexity is bounded by

O(nin; + (min{n;, n;})* + ((min{n;, n;})* + min{n;, n;} max{n;, n;})log n;)
= O(ngm; log(min{n, n,}) + (min{n, n,;})*)
= O(nynjmin{n;, n;})
For the integral weighting case, the complexity is bounded by
O(nin; + /m; + njnin;log(n; + n?))
= O(nin; + +/2n;n;n;log n;)
= O(ninj 4+ ninjn;/\/njlogn;)
= O(ngnj + ninj\/ni\/n;[n;logn;)
(
(

l
S

nin; + ninj/n;log n;)

ninjy/min{n;, n;}log(min{n;, n;}))

Therefore for the general weighting case, the complexity of Algorithm A is

= 0

N1 No

Z E O(nin; min{n;,n;})

=1 j7=1

N1 Ns

Z E O(nin;min{d;, ds})

=1 7=1

IN

Ny

Ns
< O(min{dy, dz} Z n; Z n;)
=1 =1
S O(N1N2 min{dl, dg})

Likewise, for the integral weighting case, the complexity of Algorithm A is O(Ny N3 \/min{dy,d3}
log(min{dy, dz2})).

3.2 The Algorithm for CUAL Graphs

Let Gy and G3 be two CUAL graphs. By the definition, if (4, 7) is in a minimum cost mapping
from Gy to Go, then we can assign gq[i] as the root of Gy and assign gs[j] as the root of Go,
resulting in two rooted unordered trees. By applying Algorithm A to the two trees, we can find
6(G1,G2). This naive algorithm runs in time O(NZNZmin{d;,d;}) when the edit operations
have general cost, and in time O(NZNZ\/min{d;,dy} log(min{d;,d})) when the edit operations
have integral cost.

A more careful analysis leads to a faster algorithm. Let us choose an arbitrary node, say r, in
G and assign r as the root of G;. Thus the graph G can be considered as a rooted unordered
tree. For any node u in Gy, we use 17 [u] to represent the unordered tree rooted at u with respect
to G1’s root r. Let M be a minimum cost mapping from G to G3. The distance is the minimum
of the following two cases: in the rooted Gy, (i) there exists a node z such that z is touched by
a line of M and all nodes touched by lines of M are in the tree 77 [z]; (ii) there exist two nodes
x1 and z9 such that both z; and z5 are touched by lines of M and all nodes touched by lines of
M are either in the tree 77[z1] or in the tree 77 [z4].%

Case 1. In this case, §(G1, G2) can be obtained by trying each node of Gz, in turn, as the root
and running a modified version of Algorithm A in each trial. We can show that this case requires
at most O(Ny Ny (min{dy,d})?) time when the edit operations have general cost and O(N; N
min{dy,dz} v/min{dy, dz} log(min{dy, d2})) time when the edit operations have integral cost.

Case 2. Let y1,y2 be in Gy such that (z1,y1) € M and (22,y2) € M. Then we can find an
arbitrary edge (v1,v2) on the path connecting y; and y; and split G3 at the edge into two rooted
unordered trees 152 [vq] and 15" [ve]. Each of 17 [x4], 17 [z2], T5%[y1], 15" [y2] is a rooted unordered
tree (see Figure 5). The best mapping from 77 [z1] to T5%[y1] and the best mapping from 77 [22]
to T)*[y2] can be obtained during the computation of Case 1 above. We can show that this case
requires at most O(Ny N3) time.

Thus, the algorithm for calculating §(G1,G3) for two CUAL graphs Gy and Gg, referred to
as Algorithm B, runs in time O(Ny N (min{d;, d>})?) when the edit operations have general cost
and in time O(NyNzmin{dy, d}+/min{dy, d;}log(min{dy,d;})) when the edit operations have
integral cost. Note that the gap between the running times of Algorithm A and Algorithm B is
min{dy,dy}. If one of the CUAL graphs has a bounded degree, then the running time of both
algorithms is O(N1N3).

*Note that there cannot be more than two nodes. If that were true (say there were three nodes z1, z2,z3), the
center of the three nodes would be their least common ancestor. By the mapping conditions, this ancestor would
also be in the mapping, contradicting the fact that all the nodes touched by mapping lines are in the trees rooted
at r1,z2, za.

4

Figure 5.

Conclusion

Using these simple, efficient algorithms, a user can submit a query structure and obtain those
data structures approximately matching the query. To our knowledge, this work gives the first
polynomial time algorithm ever presented to solve the edit distance problem between undirected
acyclic graphs.

Acknowledgements

We thank Jim Kaminski and Karen Pysniak of the Schering-Plough Research Institute for very

helpful discussions concerning this work.

References

[1]
[2]

3]

K. Abrahamson. Generalized string matching. SIAM J. Compul., 16:1039-1051, 1987.

J. E. Ash, P. A. Chubb, S. E. Ward, S. M. Welford, and P. Willett. Communication, Storage
and Relrieval of Chemical Information. Ellis Horwood, Chichester, England, 1985.

J. E. Ash and E. Hyde, editors. Chemical Information Systems. Ellis Horwood, Chichester,
England, 1975.

H. N. Gabow, Z. Galil, and T. H. Spencer. Efficient implementation of graph algorithms
using contraction. In Proceedings of the 25th Annual IEEE Symposium on Foundations of
Computer Science, pages 347-357, 1984.

H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM J.
Comput., 18(5):1013-1036, 1989.

7. Galil and K. Park. An improved algorithm for approximate string matching. SIAM J.
Comput., 19(6):989-999, Dec. 1990.

M. A. Johnson and G. M. Maggiora, editors. Concepts and Applications of Molecular Simi-
larity. Wiley, New York, 1990.

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Kaminski, B. Wallmark, C. Briving, and B.-M. Andersson. Antiulcer agents. 5. inhibition
of gastric HY /K*t-ATPase by substituted imidazo[1,2-a]pyridines and related analogues and
its implication in modeling the high affinity potassium ion binding site of the gastric proton
pump enzyme. Journal of Medicinal Chemistry, 34:533-541, 1991.

R. L. Kashyap and B. J. Oommen. An effective algorithm for string correction using a
generalized edit distance — I. Description of the algorithm and its optimality. Information
Sei., 23(2):123-142, 1981.

P. Kilpelainen and H. Mannila. Query primitives for tree-structured data. In M. Crochemore
and D. Gusfield, editors, Combinatorial Pattern Matching, Lecture Notes in Computer Sci-
ence, 807, pages 213-225. Springer-Verlag, 1994.

G. M. Landau and U. Vishkin. Fast parallel and serial approximate string matching. Journal
of Algorithms, 10(2):157-169, 1989.

Y. C. Martin, M. G. Bures, and P. Willett. Searching databases of three-dimensional struc-
tures. In K. B. Lipkowitz and D. D. Boyd, editors, Reviews in Computational Chemistry,
pages 213-263. VCH Publishers, New York, 1990.

W. J. Masek and M. S. Paterson. A faster algorithm for computing string editing distances.
J. Comput. System Sci., 20:18-31, 1980.

E. M. Mitchell, P. J. Artymiuk, D. W. Rice, and P. Willett. Use of techniques derived
from graph theory to compare secondary structure motifs in proteins. Journal of Molecular
Biology, 212:151-166, 1989.

A.S. Noetzel and S. M. Selkow. An analysis of the general tree-editing problem. In D. Sankofl
and J. B. Kruskal, editors, Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison, pages 237-252. Addison-Wesley, Reading, MA, 1983.

P. A. Pevzner and M. S. Waterman. A fast filtration algorithm for the substring matching
problem. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Combinatorial
Pattern Malching, Lecture Notes in Computer Science, 684, pages 197-214. Springer-Verlag,
1993.

S. M. Selkow. The tree-to-tree editing problem. Information Processing Letters, 6(6):184—
186, Dec. 1977.

D. Shasha, J. T. L. Wang, K. Zhang, and F. Y. Shih. Exact and approximate algorithms for
unordered tree matching. IEEE Transactions on Systems, Man and Cybernetics, 24(4):668—
678, April 1994.

K.-C. Tai. The tree-to-tree correction problem. J. ACM, 26(3):422-433, 1979.

E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132-137,
1985.

E. Ukkonen. Approximate string-matching over suffix trees. In A. Apostolico,
M. Crochemore, Z. Galil, and U. Manber, editors, Proc. of the 4th Annual Symposium on
Combinatorial Pattern Matching, pages 228-242. Lecture Notes in Computer Science, 684,
Springer-Verlag, 1993.

10

[22] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168—
173, Jan. 1974.

[23] W. E. Warr. Chemical Structures. Springer-Verlag, Berlin, 1988.

[24] P. Willett. Similarity and Clustering Methods in Chemical Information Systems. Research
Studies Press, Letchworth, 1987.

[25] S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM,
35(10):83-91, Oct. 1992.

[26] K. Zhang. The Editing Distance between Trees: Algorithms and Applications. PhD thesis,
Courant Institute of Mathematical Sciences, New York University, 1989.

[27] K. Zhang. A new editing based distance between unordered labeled trees. In A. Apostolico,
M. Crochemore, Z. Galil, and U. Manber, editors, Combinatorial Pattern Matching, Lecture
Noles in Computer Science, 684, pages 254-265. Springer- Verlag, 1993; journal version is to
appear in Algorithmica.

[28] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and
related problems. SIAM J. Comput., 18(6):1245-1262, Dec. 1989.

[29] K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree matching in the presence of
variable length don’t cares. Journal of Algorithms, 16(1):33-66, Jan. 1994.

11

